Twisted Linnik implies optimal covering exponent for S3

Browning TD, Kumaraswamy V, Steiner R. 2017. Twisted Linnik implies optimal covering exponent for S3. International Mathematics Research Notices.


Journal Article | Published | English
Author
Browning, Timothy DISTA ; Kumaraswamy, Vinay; Steiner, Rapael
Abstract
We show that a twisted variant of Linnik’s conjecture on sums of Kloosterman sums leads to an optimal covering exponent for S3.
Publishing Year
Date Published
2017-06-19
Journal Title
International Mathematics Research Notices
IST-REx-ID
169

Cite this

Browning TD, Kumaraswamy V, Steiner R. Twisted Linnik implies optimal covering exponent for S3. International Mathematics Research Notices. 2017. doi:10.1093/imrn/rnx116
Browning, T. D., Kumaraswamy, V., & Steiner, R. (2017). Twisted Linnik implies optimal covering exponent for S3. International Mathematics Research Notices. Oxford University Press. https://doi.org/10.1093/imrn/rnx116
Browning, Timothy D, Vinay Kumaraswamy, and Rapael Steiner. “Twisted Linnik Implies Optimal Covering Exponent for S3.” International Mathematics Research Notices. Oxford University Press, 2017. https://doi.org/10.1093/imrn/rnx116.
T. D. Browning, V. Kumaraswamy, and R. Steiner, “Twisted Linnik implies optimal covering exponent for S3,” International Mathematics Research Notices. Oxford University Press, 2017.
Browning TD, Kumaraswamy V, Steiner R. 2017. Twisted Linnik implies optimal covering exponent for S3. International Mathematics Research Notices.
Browning, Timothy D., et al. “Twisted Linnik Implies Optimal Covering Exponent for S3.” International Mathematics Research Notices, Oxford University Press, 2017, doi:10.1093/imrn/rnx116.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data ISTA Research Explorer

Sources

arXiv 1609.06097

Search this title in

Google Scholar