Adaptive gene introgression after secondary contact

Uecker H, Setter D, Hermisson J. 2015. Adaptive gene introgression after secondary contact. Journal of Mathematical Biology. 70(7), 1523–1580.

Download
OA IST-2016-458-v1+1_s00285-014-0802-y.pdf 1.32 MB

Journal Article | Published | English

Scopus indexed
Author
Uecker, HildegardISTA ; Setter, Derek; Hermisson, Joachim
Department
Abstract
By hybridization and backcrossing, alleles can surmount species boundaries and be incorporated into the genome of a related species. This introgression of genes is of particular evolutionary relevance if it involves the transfer of adaptations between populations. However, any beneficial allele will typically be associated with other alien alleles that are often deleterious and hamper the introgression process. In order to describe the introgression of an adaptive allele, we set up a stochastic model with an explicit genetic makeup of linked and unlinked deleterious alleles. Based on the theory of reducible multitype branching processes, we derive a recursive expression for the establishment probability of the beneficial allele after a single hybridization event. We furthermore study the probability that slightly deleterious alleles hitchhike to fixation. The key to the analysis is a split of the process into a stochastic phase in which the advantageous alleles establishes and a deterministic phase in which it sweeps to fixation. We thereafter apply the theory to a set of biologically relevant scenarios such as introgression in the presence of many unlinked or few closely linked deleterious alleles. A comparison to computer simulations shows that the approximations work well over a large parameter range.
Publishing Year
Date Published
2015-06-01
Journal Title
Journal of Mathematical Biology
Acknowledgement
This work was made possible with financial support by the Vienna Science and Technology Fund (WWTF), by the Deutsche Forschungsgemeinschaft (DFG), Research Unit 1078 Natural selection in structured populations, by the Austrian Science Fund (FWF) via funding for the Vienna Graduate School for Population Genetics, and by a “For Women in Science” fellowship (L’Oréal Österreich in cooperation with the Austrian Commission for UNESCO and the Austrian Academy of Sciences with financial support from the Federal Ministry for Science and Research Austria).
Volume
70
Issue
7
Page
1523 - 1580
IST-REx-ID

Cite this

Uecker H, Setter D, Hermisson J. Adaptive gene introgression after secondary contact. Journal of Mathematical Biology. 2015;70(7):1523-1580. doi:10.1007/s00285-014-0802-y
Uecker, H., Setter, D., & Hermisson, J. (2015). Adaptive gene introgression after secondary contact. Journal of Mathematical Biology. Springer. https://doi.org/10.1007/s00285-014-0802-y
Uecker, Hildegard, Derek Setter, and Joachim Hermisson. “Adaptive Gene Introgression after Secondary Contact.” Journal of Mathematical Biology. Springer, 2015. https://doi.org/10.1007/s00285-014-0802-y.
H. Uecker, D. Setter, and J. Hermisson, “Adaptive gene introgression after secondary contact,” Journal of Mathematical Biology, vol. 70, no. 7. Springer, pp. 1523–1580, 2015.
Uecker H, Setter D, Hermisson J. 2015. Adaptive gene introgression after secondary contact. Journal of Mathematical Biology. 70(7), 1523–1580.
Uecker, Hildegard, et al. “Adaptive Gene Introgression after Secondary Contact.” Journal of Mathematical Biology, vol. 70, no. 7, Springer, 2015, pp. 1523–80, doi:10.1007/s00285-014-0802-y.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2018-12-12
MD5 Checksum
00e3a67bda05d4cc165b3a48b41ef9ad


Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar