Note on a family of monotone quantum relative entropies

Deuchert A, Hainzl C, Seiringer R. 2015. Note on a family of monotone quantum relative entropies. Letters in Mathematical Physics. 105(10), 1449–1466.

Download
OA 2015_LettersMathPhys_Deuchert.pdf 484.97 KB [Preprint]
Download (ext.)

Journal Article | Published | English

Scopus indexed
Author
Deuchert, Andreas ; Hainzl, Christian; Seiringer, RobertISTA

Corresponding author has ISTA affiliation

Department
Abstract
Given a convex function (Formula presented.) and two hermitian matrices A and B, Lewin and Sabin study in (Lett Math Phys 104:691–705, 2014) the relative entropy defined by (Formula presented.). Among other things, they prove that the so-defined quantity is monotone if and only if (Formula presented.) is operator monotone. The monotonicity is then used to properly define (Formula presented.) for bounded self-adjoint operators acting on an infinite-dimensional Hilbert space by a limiting procedure. More precisely, for an increasing sequence of finite-dimensional projections (Formula presented.) with (Formula presented.) strongly, the limit (Formula presented.) is shown to exist and to be independent of the sequence of projections (Formula presented.). The question whether this sequence converges to its "obvious" limit, namely (Formula presented.), has been left open. We answer this question in principle affirmatively and show that (Formula presented.). If the operators A and B are regular enough, that is (A − B), (Formula presented.) and (Formula presented.) are trace-class, the identity (Formula presented.) holds.
Publishing Year
Date Published
2015-08-05
Journal Title
Letters in Mathematical Physics
Publisher
Springer
Volume
105
Issue
10
Page
1449 - 1466
IST-REx-ID

Cite this

Deuchert A, Hainzl C, Seiringer R. Note on a family of monotone quantum relative entropies. Letters in Mathematical Physics. 2015;105(10):1449-1466. doi:10.1007/s11005-015-0787-5
Deuchert, A., Hainzl, C., & Seiringer, R. (2015). Note on a family of monotone quantum relative entropies. Letters in Mathematical Physics. Springer. https://doi.org/10.1007/s11005-015-0787-5
Deuchert, Andreas, Christian Hainzl, and Robert Seiringer. “Note on a Family of Monotone Quantum Relative Entropies.” Letters in Mathematical Physics. Springer, 2015. https://doi.org/10.1007/s11005-015-0787-5.
A. Deuchert, C. Hainzl, and R. Seiringer, “Note on a family of monotone quantum relative entropies,” Letters in Mathematical Physics, vol. 105, no. 10. Springer, pp. 1449–1466, 2015.
Deuchert A, Hainzl C, Seiringer R. 2015. Note on a family of monotone quantum relative entropies. Letters in Mathematical Physics. 105(10), 1449–1466.
Deuchert, Andreas, et al. “Note on a Family of Monotone Quantum Relative Entropies.” Letters in Mathematical Physics, vol. 105, no. 10, Springer, 2015, pp. 1449–66, doi:10.1007/s11005-015-0787-5.
All files available under the following license(s):
Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2019-01-15
MD5 Checksum
fd7307282a314cc1fbbaef77b187516b


Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar