Communication-efficient federated learning with data and client heterogeneity
Zakerinia H, Talaei S, Nadiradze G, Alistarh D-A. 2024. Communication-efficient federated learning with data and client heterogeneity. Proceedings of the 27th International Conference on Artificial Intelligence and Statistics. AISTATS: Conference on Artificial Intelligence and Statistics, PMLR, vol. 238, 3448–3456.
Download (ext.)
https://doi.org/10.48550/arXiv.2206.10032
[Preprint]
Conference Paper
| Published
| English
Scopus indexed
Author
Department
Series Title
PMLR
Abstract
Federated Learning (FL) enables large-scale distributed training of machine learning models, while still allowing individual nodes to maintain data locally. However, executing FL at scale comes with inherent practical challenges: 1) heterogeneity of the local node data distributions, 2) heterogeneity of node computational speeds (asynchrony), but also 3) constraints in the amount of communication between the clients and the server. In this work, we present the first variant of the classic federated averaging (FedAvg) algorithm which, at the same time, supports data heterogeneity, partial client asynchrony, and communication compression. Our algorithm comes with a novel, rigorous analysis showing that, in spite of these system relaxations, it can provide similar convergence to FedAvg in interesting parameter regimes. Experimental results in the rigorous LEAF benchmark on setups of up to 300 nodes show that our algorithm ensures fast convergence for standard federated tasks, improving upon prior quantized and asynchronous approaches.
Publishing Year
Date Published
2024-05-01
Proceedings Title
Proceedings of the 27th International Conference on Artificial Intelligence and Statistics
Volume
238
Page
3448-3456
Conference
AISTATS: Conference on Artificial Intelligence and Statistics
Conference Location
Valencia, Spain
Conference Date
2024-05-02 – 2024-05-04
eISSN
IST-REx-ID
Cite this
Zakerinia H, Talaei S, Nadiradze G, Alistarh D-A. Communication-efficient federated learning with data and client heterogeneity. In: Proceedings of the 27th International Conference on Artificial Intelligence and Statistics. Vol 238. ML Research Press; 2024:3448-3456.
Zakerinia, H., Talaei, S., Nadiradze, G., & Alistarh, D.-A. (2024). Communication-efficient federated learning with data and client heterogeneity. In Proceedings of the 27th International Conference on Artificial Intelligence and Statistics (Vol. 238, pp. 3448–3456). Valencia, Spain: ML Research Press.
Zakerinia, Hossein, Shayan Talaei, Giorgi Nadiradze, and Dan-Adrian Alistarh. “Communication-Efficient Federated Learning with Data and Client Heterogeneity.” In Proceedings of the 27th International Conference on Artificial Intelligence and Statistics, 238:3448–56. ML Research Press, 2024.
H. Zakerinia, S. Talaei, G. Nadiradze, and D.-A. Alistarh, “Communication-efficient federated learning with data and client heterogeneity,” in Proceedings of the 27th International Conference on Artificial Intelligence and Statistics, Valencia, Spain, 2024, vol. 238, pp. 3448–3456.
Zakerinia H, Talaei S, Nadiradze G, Alistarh D-A. 2024. Communication-efficient federated learning with data and client heterogeneity. Proceedings of the 27th International Conference on Artificial Intelligence and Statistics. AISTATS: Conference on Artificial Intelligence and Statistics, PMLR, vol. 238, 3448–3456.
Zakerinia, Hossein, et al. “Communication-Efficient Federated Learning with Data and Client Heterogeneity.” Proceedings of the 27th International Conference on Artificial Intelligence and Statistics, vol. 238, ML Research Press, 2024, pp. 3448–56.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Open Access
Export
Marked PublicationsOpen Data ISTA Research Explorer
Sources
arXiv 2206.10032