Equivariant cohomology and rings of functions

Rychlewicz KP. 2024. Equivariant cohomology and rings of functions. Institute of Science and Technology Austria.

Download
OA thesis.pdf 3.70 MB [Published Version]

Thesis | PhD | Published | English
Supervisor

Corresponding author has ISTA affiliation

Series Title
ISTA Thesis
Abstract
This dissertation is the summary of the author’s work, concerning the relations between cohomology rings of algebraic varieties and rings of functions on zero schemes and fixed point schemes. For most of the thesis, the focus is on smooth complex varieties with an action of a principally paired group, e.g. a parabolic subgroup of a reductive group. The fundamental theorem 5.2.11 from co-authored article [66] says that if the principal nilpotent has a unique zero, then the zero scheme over the Kostant section is isomorphic to the spectrum of the equivariant cohomology ring, remembering the grading in terms of a C^* action. A similar statement is proved also for the G-invariant functions on the total zero scheme over the whole Lie algebra. Additionally, we are able to prove an analogous result for the GKM spaces, which poses the question on a joint generalisation. We also tackle the situation of a singular variety. As long as it is embedded in a smooth variety with regular action, we are able to study its cohomology as well by means of the zero scheme. In case of e.g. Schubert varieties this determines the cohomology ring completely. In largest generality, this allows us to see a significant part of the cohomology ring. We also show (Theorem 6.2.1) that the cohomology ring of spherical varieties appears as the ring of functions on the zero scheme. The computational aspect is not easy, but one can hope that this can bring some concrete information about such cohomology rings. Lastly, the K-theory conjecture 6.3.1 is studied, with some results attained for GKM spaces. The thesis includes also an introduction to group actions on algebraic varieties. In particular, the vector fields associated to the actions are extensively studied. We also provide a version of the Kostant section for arbitrary principally paired group, which parametrises the regular orbits in the Lie algebra of an algebraic group. Before proving the main theorem, we also include a historical overview of the field. In particular we bring together the results of Akyildiz, Carrell and Lieberman on non-equivariant cohomology rings.
Publishing Year
Date Published
2024-06-25
Publisher
Institute of Science and Technology Austria
Page
117
ISSN
IST-REx-ID

Cite this

Rychlewicz KP. Equivariant cohomology and rings of functions. 2024. doi:10.15479/at:ista:17156
Rychlewicz, K. P. (2024). Equivariant cohomology and rings of functions. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:17156
Rychlewicz, Kamil P. “Equivariant Cohomology and Rings of Functions.” Institute of Science and Technology Austria, 2024. https://doi.org/10.15479/at:ista:17156.
K. P. Rychlewicz, “Equivariant cohomology and rings of functions,” Institute of Science and Technology Austria, 2024.
Rychlewicz KP. 2024. Equivariant cohomology and rings of functions. Institute of Science and Technology Austria.
Rychlewicz, Kamil P. Equivariant Cohomology and Rings of Functions. Institute of Science and Technology Austria, 2024, doi:10.15479/at:ista:17156.
All files available under the following license(s):
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0):
Main File(s)
File Name
thesis.pdf 3.70 MB
Access Level
OA Open Access
Date Uploaded
2024-06-26
MD5 Checksum
7bbadb1fbc9ed2a1ecf54597f88af99c

Source File
File Name
thesis.zip 2.76 MB
Access Level
Restricted Closed Access
Date Uploaded
2024-06-26
MD5 Checksum
1610063569f5452f8a5acef728c2fc26

Material in ISTA:
Part of this Dissertation

Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar