Prethermalization for deformed Wigner Matrices

Erdös L, Henheik SJ, Reker J, Riabov V. Prethermalization for deformed Wigner Matrices. arXiv, 10.48550/arXiv.2310.06677.

Download (ext.)

Preprint | Submitted | English
Department
Abstract
We prove that a class of weakly perturbed Hamiltonians of the form $H_λ= H_0 + λW$, with $W$ being a Wigner matrix, exhibits prethermalization. That is, the time evolution generated by $H_λ$ relaxes to its ultimate thermal state via an intermediate prethermal state with a lifetime of order $λ^{-2}$. Moreover, we obtain a general relaxation formula, expressing the perturbed dynamics via the unperturbed dynamics and the ultimate thermal state. The proof relies on a two-resolvent law for the deformed Wigner matrix $H_λ$.
Publishing Year
Date Published
2023-12-23
Journal Title
arXiv
IST-REx-ID

Cite this

Erdös L, Henheik SJ, Reker J, Riabov V. Prethermalization for deformed Wigner Matrices. arXiv. doi:10.48550/arXiv.2310.06677
Erdös, L., Henheik, S. J., Reker, J., & Riabov, V. (n.d.). Prethermalization for deformed Wigner Matrices. arXiv. https://doi.org/10.48550/arXiv.2310.06677
Erdös, László, Sven Joscha Henheik, Jana Reker, and Volodymyr Riabov. “Prethermalization for Deformed Wigner Matrices.” ArXiv, n.d. https://doi.org/10.48550/arXiv.2310.06677.
L. Erdös, S. J. Henheik, J. Reker, and V. Riabov, “Prethermalization for deformed Wigner Matrices,” arXiv. .
Erdös L, Henheik SJ, Reker J, Riabov V. Prethermalization for deformed Wigner Matrices. arXiv, 10.48550/arXiv.2310.06677.
Erdös, László, et al. “Prethermalization for Deformed Wigner Matrices.” ArXiv, doi:10.48550/arXiv.2310.06677.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access
Material in ISTA:
Dissertation containing ISTA record

Export

Marked Publications

Open Data ISTA Research Explorer

Sources

arXiv 2310.06677

Search this title in

Google Scholar