Astrophysics with the laser interferometer space antenna
Amaro-Seoane P et al. 2023. Astrophysics with the laser interferometer space antenna. Living Reviews in Relativity. 26(1), 2.
Download (ext.)
https://doi.org/10.1007/s41114-022-00041-y
[Published Version]
Journal Article
| Published
| English
Scopus indexed
Author
Amaro-Seoane, Pau;
Andrews, Jeff;
Arca Sedda, Manuel;
Askar, Abbas;
Baghi, Quentin;
Balasov, Razvan;
Bartos, Imre;
Bavera, Simone S.;
Bellovary, Jillian;
Berry, Christopher P. L.;
Berti, Emanuele;
Bianchi, Stefano
All
All
Abstract
The Laser Interferometer Space Antenna (LISA) will be a transformative experiment for gravitational wave astronomy, and, as such, it will offer unique opportunities to address many key astrophysical questions in a completely novel way. The synergy with ground-based and space-born instruments in the electromagnetic domain, by enabling multi-messenger observations, will add further to the discovery potential of LISA. The next decade is crucial to prepare the astrophysical community for LISA’s first observations. This review outlines the extensive landscape of astrophysical theory, numerical simulations, and astronomical observations that are instrumental for modeling and interpreting the upcoming LISA datastream. To this aim, the current knowledge in three main source classes for LISA is reviewed; ultra-compact stellar-mass binaries, massive black hole binaries, and extreme or interme-diate mass ratio inspirals. The relevant astrophysical processes and the established modeling techniques are summarized. Likewise, open issues and gaps in our understanding of these sources are highlighted, along with an indication of how LISA could help making progress in the different areas. New research avenues that LISA itself, or its joint exploitation with upcoming studies in the electromagnetic domain, will enable, are also illustrated. Improvements in modeling and analysis approaches, such as the combination of numerical simulations and modern data science techniques, are discussed. This review is intended to be a starting point for using LISA as a new discovery tool for understanding our Universe.
Publishing Year
Date Published
2023-03-14
Journal Title
Living Reviews in Relativity
Publisher
Springer Science and Business Media LLC
Volume
26
Issue
1
Article Number
2
ISSN
IST-REx-ID
Cite this
Amaro-Seoane P, Andrews J, Arca Sedda M, et al. Astrophysics with the laser interferometer space antenna. Living Reviews in Relativity. 2023;26(1). doi:10.1007/s41114-022-00041-y
Amaro-Seoane, P., Andrews, J., Arca Sedda, M., Askar, A., Baghi, Q., Balasov, R., … Vigna-Gómez, A. (2023). Astrophysics with the laser interferometer space antenna. Living Reviews in Relativity. Springer Science and Business Media LLC. https://doi.org/10.1007/s41114-022-00041-y
Amaro-Seoane, Pau, Jeff Andrews, Manuel Arca Sedda, Abbas Askar, Quentin Baghi, Razvan Balasov, Imre Bartos, et al. “Astrophysics with the Laser Interferometer Space Antenna.” Living Reviews in Relativity. Springer Science and Business Media LLC, 2023. https://doi.org/10.1007/s41114-022-00041-y.
P. Amaro-Seoane et al., “Astrophysics with the laser interferometer space antenna,” Living Reviews in Relativity, vol. 26, no. 1. Springer Science and Business Media LLC, 2023.
Amaro-Seoane P et al. 2023. Astrophysics with the laser interferometer space antenna. Living Reviews in Relativity. 26(1), 2.
Amaro-Seoane, Pau, et al. “Astrophysics with the Laser Interferometer Space Antenna.” Living Reviews in Relativity, vol. 26, no. 1, 2, Springer Science and Business Media LLC, 2023, doi:10.1007/s41114-022-00041-y.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Open Access