Guided diffusion for inverse molecular design
Weiss T, Mayo Yanes E, Chakraborty S, Cosmo L, Bronstein AM, Gershoni-Poranne R. 2023. Guided diffusion for inverse molecular design. Nature Computational Science. 3(10), 873–882.
Download (ext.)
https://doi.org/10.26434/chemrxiv-2023-z8ltp
[Preprint]
Journal Article
| Published
| English
Scopus indexed
Author
Weiss, Tomer;
Mayo Yanes, Eduardo;
Chakraborty, Sabyasachi;
Cosmo, Luca;
Bronstein, Alex M.ISTA ;
Gershoni-Poranne, Renana
Abstract
The holy grail of materials science is de novo molecular design, meaning engineering molecules with desired characteristics. The introduction of generative deep learning has greatly advanced efforts in this direction, yet molecular discovery remains challenging and often inefficient. Herein we introduce GaUDI, a guided diffusion model for inverse molecular design that combines an equivariant graph neural net for property prediction and a generative diffusion model. We demonstrate GaUDI’s effectiveness in designing molecules for organic electronic applications by using single- and multiple-objective tasks applied to a generated dataset of 475,000 polycyclic aromatic systems. GaUDI shows improved conditional design, generating molecules with optimal properties and even going beyond the original distribution to suggest better molecules than those in the dataset. In addition to point-wise targets, GaUDI can also be guided toward open-ended targets (for example, a minimum or maximum) and in all cases achieves close to 100% validity of generated molecules.
Publishing Year
Date Published
2023-10-05
Journal Title
Nature Computational Science
Publisher
Springer Nature
Volume
3
Issue
10
Page
873-882
ISSN
IST-REx-ID
Cite this
Weiss T, Mayo Yanes E, Chakraborty S, Cosmo L, Bronstein AM, Gershoni-Poranne R. Guided diffusion for inverse molecular design. Nature Computational Science. 2023;3(10):873-882. doi:10.1038/s43588-023-00532-0
Weiss, T., Mayo Yanes, E., Chakraborty, S., Cosmo, L., Bronstein, A. M., & Gershoni-Poranne, R. (2023). Guided diffusion for inverse molecular design. Nature Computational Science. Springer Nature. https://doi.org/10.1038/s43588-023-00532-0
Weiss, Tomer, Eduardo Mayo Yanes, Sabyasachi Chakraborty, Luca Cosmo, Alex M. Bronstein, and Renana Gershoni-Poranne. “Guided Diffusion for Inverse Molecular Design.” Nature Computational Science. Springer Nature, 2023. https://doi.org/10.1038/s43588-023-00532-0.
T. Weiss, E. Mayo Yanes, S. Chakraborty, L. Cosmo, A. M. Bronstein, and R. Gershoni-Poranne, “Guided diffusion for inverse molecular design,” Nature Computational Science, vol. 3, no. 10. Springer Nature, pp. 873–882, 2023.
Weiss T, Mayo Yanes E, Chakraborty S, Cosmo L, Bronstein AM, Gershoni-Poranne R. 2023. Guided diffusion for inverse molecular design. Nature Computational Science. 3(10), 873–882.
Weiss, Tomer, et al. “Guided Diffusion for Inverse Molecular Design.” Nature Computational Science, vol. 3, no. 10, Springer Nature, 2023, pp. 873–82, doi:10.1038/s43588-023-00532-0.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Open Access
Export
Marked PublicationsOpen Data ISTA Research Explorer
Sources
PMID: 38177755
PubMed | Europe PMC