Demystifying graph sparsification algorithms in graph properties preservation
Chen Y, Ye H, Vedula S, Bronstein AM, Dreslinski R, Mudge T, Talati N. 2023. Demystifying graph sparsification algorithms in graph properties preservation. Proceedings of the VLDB Endowment. 17(3), 427–440.
Download (ext.)
https://doi.org/10.48550/arXiv.2311.12314
[Preprint]
Journal Article
| Published
| English
Scopus indexed
Author
Chen, Yuhan;
Ye, Haojie;
Vedula, Sanketh;
Bronstein, Alex M.ISTA ;
Dreslinski, Ronald;
Mudge, Trevor;
Talati, Nishil
Abstract
Graph sparsification is a technique that approximates a given graph by a sparse graph with a subset of vertices and/or edges. The goal of an effective sparsification algorithm is to maintain specific graph properties relevant to the downstream task while minimizing the graph's size. Graph algorithms often suffer from long execution time due to the irregularity and the large real-world graph size. Graph sparsification can be applied to greatly reduce the run time of graph algorithms by substituting the full graph with a much smaller sparsified graph, without significantly degrading the output quality. However, the interaction between numerous sparsifiers and graph properties is not widely explored, and the potential of graph sparsification is not fully understood.</jats:p>
<jats:p>In this work, we cover 16 widely-used graph metrics, 12 representative graph sparsification algorithms, and 14 real-world input graphs spanning various categories, exhibiting diverse characteristics, sizes, and densities. We developed a framework to extensively assess the performance of these sparsification algorithms against graph metrics, and provide insights to the results. Our study shows that there is no one sparsifier that performs the best in preserving all graph properties, e.g. sparsifiers that preserve distance-related graph properties (eccentricity) struggle to perform well on Graph Neural Networks (GNN). This paper presents a comprehensive experimental study evaluating the performance of sparsification algorithms in preserving essential graph metrics. The insights inform future research in incorporating matching graph sparsification to graph algorithms to maximize benefits while minimizing quality degradation. Furthermore, we provide a framework to facilitate the future evaluation of evolving sparsification algorithms, graph metrics, and ever-growing graph data.
Publishing Year
Date Published
2023-11-01
Journal Title
Proceedings of the VLDB Endowment
Publisher
Association for Computing Machinery
Volume
17
Issue
3
Page
427-440
ISSN
IST-REx-ID
Cite this
Chen Y, Ye H, Vedula S, et al. Demystifying graph sparsification algorithms in graph properties preservation. Proceedings of the VLDB Endowment. 2023;17(3):427-440. doi:10.14778/3632093.3632106
Chen, Y., Ye, H., Vedula, S., Bronstein, A. M., Dreslinski, R., Mudge, T., & Talati, N. (2023). Demystifying graph sparsification algorithms in graph properties preservation. Proceedings of the VLDB Endowment. Association for Computing Machinery. https://doi.org/10.14778/3632093.3632106
Chen, Yuhan, Haojie Ye, Sanketh Vedula, Alex M. Bronstein, Ronald Dreslinski, Trevor Mudge, and Nishil Talati. “Demystifying Graph Sparsification Algorithms in Graph Properties Preservation.” Proceedings of the VLDB Endowment. Association for Computing Machinery, 2023. https://doi.org/10.14778/3632093.3632106.
Y. Chen et al., “Demystifying graph sparsification algorithms in graph properties preservation,” Proceedings of the VLDB Endowment, vol. 17, no. 3. Association for Computing Machinery, pp. 427–440, 2023.
Chen Y, Ye H, Vedula S, Bronstein AM, Dreslinski R, Mudge T, Talati N. 2023. Demystifying graph sparsification algorithms in graph properties preservation. Proceedings of the VLDB Endowment. 17(3), 427–440.
Chen, Yuhan, et al. “Demystifying Graph Sparsification Algorithms in Graph Properties Preservation.” Proceedings of the VLDB Endowment, vol. 17, no. 3, Association for Computing Machinery, 2023, pp. 427–40, doi:10.14778/3632093.3632106.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Open Access
Export
Marked PublicationsOpen Data ISTA Research Explorer
Sources
arXiv 2311.12314