A Gromov-Hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching
Bronstein AM, Bronstein MM, Kimmel R, Mahmoudi M, Sapiro G. 2010. A Gromov-Hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching. International Journal of Computer Vision. 89(2–3), 266–286.
Download
No fulltext has been uploaded. References only!
Journal Article
| Published
| English
Scopus indexed
Author
Bronstein, Alex M.ISTA ;
Bronstein, Michael M.;
Kimmel, Ron;
Mahmoudi, Mona;
Sapiro, Guillermo
Abstract
In this paper, the problem of non-rigid shape recognition is studied from the perspective of metric geometry. In particular, we explore the applicability of diffusion distances within the Gromov-Hausdorff framework. While the traditionally used geodesic distance exploits the shortest path between points on the surface, the diffusion distance averages all paths connecting the points. The diffusion distance constitutes an intrinsic metric which is robust, in particular, to topological changes. Such changes in the form of shortcuts, holes, and missing data may be a result of natural non-rigid deformations as well as acquisition and representation noise due to inaccurate surface construction. The presentation of the proposed framework is complemented with examples demonstrating that in addition to the relatively low complexity involved in the computation of the diffusion distances between surface points, its recognition and matching performances favorably compare to the classical geodesic distances in the presence of topological changes between the non-rigid shapes.
Publishing Year
Date Published
2010-09-01
Journal Title
International Journal of Computer Vision
Publisher
Springer Nature
Volume
89
Issue
2-3
Page
266-286
ISSN
eISSN
IST-REx-ID
Cite this
Bronstein AM, Bronstein MM, Kimmel R, Mahmoudi M, Sapiro G. A Gromov-Hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching. International Journal of Computer Vision. 2010;89(2-3):266-286. doi:10.1007/s11263-009-0301-6
Bronstein, A. M., Bronstein, M. M., Kimmel, R., Mahmoudi, M., & Sapiro, G. (2010). A Gromov-Hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching. International Journal of Computer Vision. Springer Nature. https://doi.org/10.1007/s11263-009-0301-6
Bronstein, Alex M., Michael M. Bronstein, Ron Kimmel, Mona Mahmoudi, and Guillermo Sapiro. “A Gromov-Hausdorff Framework with Diffusion Geometry for Topologically-Robust Non-Rigid Shape Matching.” International Journal of Computer Vision. Springer Nature, 2010. https://doi.org/10.1007/s11263-009-0301-6.
A. M. Bronstein, M. M. Bronstein, R. Kimmel, M. Mahmoudi, and G. Sapiro, “A Gromov-Hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching,” International Journal of Computer Vision, vol. 89, no. 2–3. Springer Nature, pp. 266–286, 2010.
Bronstein AM, Bronstein MM, Kimmel R, Mahmoudi M, Sapiro G. 2010. A Gromov-Hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching. International Journal of Computer Vision. 89(2–3), 266–286.
Bronstein, Alex M., et al. “A Gromov-Hausdorff Framework with Diffusion Geometry for Topologically-Robust Non-Rigid Shape Matching.” International Journal of Computer Vision, vol. 89, no. 2–3, Springer Nature, 2010, pp. 266–86, doi:10.1007/s11263-009-0301-6.