Shape retrieval of non-rigid 3D human models
Pickup D, Sun X, Rosin PL, Martin RR, Cheng Z, Lian Z, Aono M, Hamza AB, Bronstein AM, Bronstein M, Bu S, Castellani U, Cheng S, Garro V, Giachetti A, Godil A, Isaia L, Han J, Johan H, Lai L, Li B, Li C, Li H, Litman R, Liu X, Liu Z, Lu Y, Sun L, Tam G, Tatsuma A, Ye J. 2016. Shape retrieval of non-rigid 3D human models. International Journal of Computer Vision. 120(2), 169–193.
Download (ext.)
https://doi.org/10.1007/s11263-016-0903-8
[Published Version]
Journal Article
| Published
| English
Scopus indexed
Author
Pickup, D.;
Sun, X.;
Rosin, P. L.;
Martin, R. R.;
Cheng, Z.;
Lian, Z.;
Aono, M.;
Hamza, A. Ben;
Bronstein, Alex M.ISTA ;
Bronstein, M.;
Bu, S.;
Castellani, U.
All
All
Abstract
3D models of humans are commonly used within computer graphics and vision, and so the ability to distinguish between body shapes is an important shape retrieval problem. We extend our recent paper which provided a benchmark for testing non-rigid 3D shape retrieval algorithms on 3D human models. This benchmark provided a far stricter challenge than previous shape benchmarks. We have added 145 new models for use as a separate training set, in order to standardise the training data used and provide a fairer comparison. We have also included experiments with the FAUST dataset of human scans. All participants of the previous benchmark study have taken part in the new tests reported here, many providing updated results using the new data. In addition, further participants have also taken part, and we provide extra analysis of the retrieval results. A total of 25 different shape retrieval methods are compared.
Publishing Year
Date Published
2016-11-01
Journal Title
International Journal of Computer Vision
Publisher
Springer Nature
Volume
120
Issue
2
Page
169-193
ISSN
eISSN
IST-REx-ID
Cite this
Pickup D, Sun X, Rosin PL, et al. Shape retrieval of non-rigid 3D human models. International Journal of Computer Vision. 2016;120(2):169-193. doi:10.1007/s11263-016-0903-8
Pickup, D., Sun, X., Rosin, P. L., Martin, R. R., Cheng, Z., Lian, Z., … Ye, J. (2016). Shape retrieval of non-rigid 3D human models. International Journal of Computer Vision. Springer Nature. https://doi.org/10.1007/s11263-016-0903-8
Pickup, D., X. Sun, P. L. Rosin, R. R. Martin, Z. Cheng, Z. Lian, M. Aono, et al. “Shape Retrieval of Non-Rigid 3D Human Models.” International Journal of Computer Vision. Springer Nature, 2016. https://doi.org/10.1007/s11263-016-0903-8.
D. Pickup et al., “Shape retrieval of non-rigid 3D human models,” International Journal of Computer Vision, vol. 120, no. 2. Springer Nature, pp. 169–193, 2016.
Pickup D, Sun X, Rosin PL, Martin RR, Cheng Z, Lian Z, Aono M, Hamza AB, Bronstein AM, Bronstein M, Bu S, Castellani U, Cheng S, Garro V, Giachetti A, Godil A, Isaia L, Han J, Johan H, Lai L, Li B, Li C, Li H, Litman R, Liu X, Liu Z, Lu Y, Sun L, Tam G, Tatsuma A, Ye J. 2016. Shape retrieval of non-rigid 3D human models. International Journal of Computer Vision. 120(2), 169–193.
Pickup, D., et al. “Shape Retrieval of Non-Rigid 3D Human Models.” International Journal of Computer Vision, vol. 120, no. 2, Springer Nature, 2016, pp. 169–93, doi:10.1007/s11263-016-0903-8.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Open Access