Deep neural networks with random Gaussian weights: A universal classification strategy?
Giryes R, Sapiro G, Bronstein AM. 2016. Deep neural networks with random Gaussian weights: A universal classification strategy? IEEE Transactions on Signal Processing. 64(13), 3444–3457.
Download (ext.)
https://doi.org/10.48550/arXiv.1504.08291
[Preprint]
Journal Article
| Published
| English
Scopus indexed
Author
Giryes, Raja;
Sapiro, Guillermo;
Bronstein, Alex M.ISTA
Abstract
Three important properties of a classification machinery are i) the system preserves the core information of the input data; ii) the training examples convey information about unseen data; and iii) the system is able to treat differently points from different classes. In this paper, we show that these fundamental properties are satisfied by the architecture of deep neural networks. We formally prove that these networks with random Gaussian weights perform a distance-preserving embedding of the data, with a special treatment for in-class and out-of-class data. Similar points at the input of the network are likely to have a similar output. The theoretical analysis of deep networks here presented exploits tools used in the compressed sensing and dictionary learning literature, thereby making a formal connection between these important topics. The derived results allow drawing conclusions on the metric learning properties of the network and their relation to its structure, as well as providing bounds on the required size of the training set such that the training examples would represent faithfully the unseen data. The results are validated with state-of-the-art trained networks.
Publishing Year
Date Published
2016-07-01
Journal Title
IEEE Transactions on Signal Processing
Publisher
IEEE
Volume
64
Issue
13
Page
3444-3457
ISSN
eISSN
IST-REx-ID
Cite this
Giryes R, Sapiro G, Bronstein AM. Deep neural networks with random Gaussian weights: A universal classification strategy? IEEE Transactions on Signal Processing. 2016;64(13):3444-3457. doi:10.1109/tsp.2016.2546221
Giryes, R., Sapiro, G., & Bronstein, A. M. (2016). Deep neural networks with random Gaussian weights: A universal classification strategy? IEEE Transactions on Signal Processing. IEEE. https://doi.org/10.1109/tsp.2016.2546221
Giryes, Raja, Guillermo Sapiro, and Alex M. Bronstein. “Deep Neural Networks with Random Gaussian Weights: A Universal Classification Strategy?” IEEE Transactions on Signal Processing. IEEE, 2016. https://doi.org/10.1109/tsp.2016.2546221.
R. Giryes, G. Sapiro, and A. M. Bronstein, “Deep neural networks with random Gaussian weights: A universal classification strategy?,” IEEE Transactions on Signal Processing, vol. 64, no. 13. IEEE, pp. 3444–3457, 2016.
Giryes R, Sapiro G, Bronstein AM. 2016. Deep neural networks with random Gaussian weights: A universal classification strategy? IEEE Transactions on Signal Processing. 64(13), 3444–3457.
Giryes, Raja, et al. “Deep Neural Networks with Random Gaussian Weights: A Universal Classification Strategy?” IEEE Transactions on Signal Processing, vol. 64, no. 13, IEEE, 2016, pp. 3444–57, doi:10.1109/tsp.2016.2546221.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Open Access
Export
Marked PublicationsOpen Data ISTA Research Explorer
Sources
arXiv 1504.08291