Lipschitz robustness of finite-state transducers

Henzinger TA, Otop J, Samanta R. 2014. Lipschitz robustness of finite-state transducers. Leibniz International Proceedings in Informatics, LIPIcs. FSTTCS: Foundations of Software Technology and Theoretical Computer Science, LIPIcs, vol. 29, 431–443.

Download
OA IST-2017-804-v1+1_37.pdf 562.15 KB [Published Version]

Conference Paper | Published | English

Scopus indexed

Corresponding author has ISTA affiliation

Series Title
LIPIcs
Abstract
We investigate the problem of checking if a finite-state transducer is robust to uncertainty in its input. Our notion of robustness is based on the analytic notion of Lipschitz continuity - a transducer is K-(Lipschitz) robust if the perturbation in its output is at most K times the perturbation in its input. We quantify input and output perturbation using similarity functions. We show that K-robustness is undecidable even for deterministic transducers. We identify a class of functional transducers, which admits a polynomial time automata-theoretic decision procedure for K-robustness. This class includes Mealy machines and functional letter-to-letter transducers. We also study K-robustness of nondeterministic transducers. Since a nondeterministic transducer generates a set of output words for each input word, we quantify output perturbation using setsimilarity functions. We show that K-robustness of nondeterministic transducers is undecidable, even for letter-to-letter transducers. We identify a class of set-similarity functions which admit decidable K-robustness of letter-to-letter transducers.
Publishing Year
Date Published
2014-12-01
Proceedings Title
Leibniz International Proceedings in Informatics, LIPIcs
Publisher
Schloss Dagstuhl - Leibniz-Zentrum für Informatik
Volume
29
Page
431 - 443
Conference
FSTTCS: Foundations of Software Technology and Theoretical Computer Science
Conference Location
Delhi, India
Conference Date
2014-12-15 – 2014-12-17
IST-REx-ID

Cite this

Henzinger TA, Otop J, Samanta R. Lipschitz robustness of finite-state transducers. In: Leibniz International Proceedings in Informatics, LIPIcs. Vol 29. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2014:431-443. doi:10.4230/LIPIcs.FSTTCS.2014.431
Henzinger, T. A., Otop, J., & Samanta, R. (2014). Lipschitz robustness of finite-state transducers. In Leibniz International Proceedings in Informatics, LIPIcs (Vol. 29, pp. 431–443). Delhi, India: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.FSTTCS.2014.431
Henzinger, Thomas A, Jan Otop, and Roopsha Samanta. “Lipschitz Robustness of Finite-State Transducers.” In Leibniz International Proceedings in Informatics, LIPIcs, 29:431–43. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2014. https://doi.org/10.4230/LIPIcs.FSTTCS.2014.431.
T. A. Henzinger, J. Otop, and R. Samanta, “Lipschitz robustness of finite-state transducers,” in Leibniz International Proceedings in Informatics, LIPIcs, Delhi, India, 2014, vol. 29, pp. 431–443.
Henzinger TA, Otop J, Samanta R. 2014. Lipschitz robustness of finite-state transducers. Leibniz International Proceedings in Informatics, LIPIcs. FSTTCS: Foundations of Software Technology and Theoretical Computer Science, LIPIcs, vol. 29, 431–443.
Henzinger, Thomas A., et al. “Lipschitz Robustness of Finite-State Transducers.” Leibniz International Proceedings in Informatics, LIPIcs, vol. 29, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2014, pp. 431–43, doi:10.4230/LIPIcs.FSTTCS.2014.431.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
Access Level
OA Open Access
Date Uploaded
2018-12-12
MD5 Checksum
7b1aff1710a8bffb7080ec07f62d9a17


Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar