Smallest enclosing spheres and Chernoff points in Bregman geometry
Edelsbrunner H, Virk Z, Wagner H. 2018. Smallest enclosing spheres and Chernoff points in Bregman geometry. SoCG: Symposium on Computational Geometry, Leibniz International Proceedings in Information, LIPIcs, vol. 99, 35:1-35:13.
Download
Conference Paper
| Published
| English
Scopus indexed
Author
Department
Series Title
Leibniz International Proceedings in Information, LIPIcs
Abstract
Smallest enclosing spheres of finite point sets are central to methods in topological data analysis. Focusing on Bregman divergences to measure dissimilarity, we prove bounds on the location of the center of a smallest enclosing sphere. These bounds depend on the range of radii for which Bregman balls are convex.
Publishing Year
Date Published
2018-06-11
Publisher
Schloss Dagstuhl - Leibniz-Zentrum für Informatik
Acknowledgement
This research is partially supported by the Office of Naval Research, through grant no. N62909-18-1-2038, and the DFG Collaborative Research Center TRR 109, ‘Discretization in Geometry and Dynamics’, through grant no. I02979-N35 of the Austrian Science Fund
Volume
99
Page
35:1 - 35:13
Conference
SoCG: Symposium on Computational Geometry
Conference Location
Budapest, Hungary
Conference Date
2018-06-11 – 2018-06-14
IST-REx-ID
Cite this
Edelsbrunner H, Virk Z, Wagner H. Smallest enclosing spheres and Chernoff points in Bregman geometry. In: Vol 99. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2018:35:1-35:13. doi:10.4230/LIPIcs.SoCG.2018.35
Edelsbrunner, H., Virk, Z., & Wagner, H. (2018). Smallest enclosing spheres and Chernoff points in Bregman geometry (Vol. 99, p. 35:1-35:13). Presented at the SoCG: Symposium on Computational Geometry, Budapest, Hungary: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2018.35
Edelsbrunner, Herbert, Ziga Virk, and Hubert Wagner. “Smallest Enclosing Spheres and Chernoff Points in Bregman Geometry,” 99:35:1-35:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. https://doi.org/10.4230/LIPIcs.SoCG.2018.35.
H. Edelsbrunner, Z. Virk, and H. Wagner, “Smallest enclosing spheres and Chernoff points in Bregman geometry,” presented at the SoCG: Symposium on Computational Geometry, Budapest, Hungary, 2018, vol. 99, p. 35:1-35:13.
Edelsbrunner H, Virk Z, Wagner H. 2018. Smallest enclosing spheres and Chernoff points in Bregman geometry. SoCG: Symposium on Computational Geometry, Leibniz International Proceedings in Information, LIPIcs, vol. 99, 35:1-35:13.
Edelsbrunner, Herbert, et al. Smallest Enclosing Spheres and Chernoff Points in Bregman Geometry. Vol. 99, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018, p. 35:1-35:13, doi:10.4230/LIPIcs.SoCG.2018.35.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
2018_LIPIcs_Edelsbrunner.pdf
489.08 KB
Access Level
Open Access
Date Uploaded
2018-12-17
MD5 Checksum
7509403803b3ac1aee94bbc2ad293d21