Insights into the localization and function of the membrane trafficking regulator GNOM ARF-GEF at the Golgi apparatus in Arabidopsis
Naramoto S, Otegui M, Kutsuna N, De Rycke R, Dainobu T, Karampelias M, Fujimoto M, Feraru E, Miki D, Fukuda H, Nakano A, Friml J. 2014. Insights into the localization and function of the membrane trafficking regulator GNOM ARF-GEF at the Golgi apparatus in Arabidopsis. Plant Cell. 26(7), 3062–3076.
Download (ext.)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4145132/
[Submitted Version]
Journal Article
| Published
| English
Scopus indexed
Author
Naramoto, Satoshi;
Otegui, Marisa;
Kutsuna, Natsumaro;
De Rycke, Riet;
Dainobu, Tomoko;
Karampelias, Michael;
Fujimoto, Masaru;
Feraru, Elena;
Miki, Daisuke;
Fukuda, Hiroo;
Nakano, Akihiko;
Friml, JiríISTA
All
All
Department
Abstract
GNOM is one of the most characterized membrane trafficking regulators in plants, with crucial roles in development. GNOM encodes an ARF-guanine nucleotide exchange factor (ARF-GEF) that activates small GTPases of the ARF (ADP ribosylation factor) class to mediate vesicle budding at endomembranes. The crucial role of GNOM in recycling of PIN auxin transporters and other proteins to the plasma membrane was identified in studies using the ARF-GEF inhibitor brefeldin A (BFA). GNOM, the most prominent regulator of recycling in plants, has been proposed to act and localize at so far elusive recycling endosomes. Here, we report the GNOM localization in context of its cellular function in Arabidopsis thaliana. State-of-the-art imaging, pharmacological interference, and ultrastructure analysis show that GNOM predominantly localizes to Golgi apparatus. Super-resolution confocal live imaging microscopy identified GNOM and its closest homolog GNOM-like 1 at distinct subdomains on Golgi cisternae. Short-term BFA treatment stabilizes GNOM at the Golgi apparatus, whereas prolonged exposures results in GNOM translocation to trans-Golgi network (TGN)/early endosomes (EEs). Malformed TGN/EE in gnom mutants suggests a role for GNOM in maintaining TGN/EE function. Our results redefine the subcellular action of GNOM and reevaluate the identity and function of recycling endosomes in plants.
Publishing Year
Date Published
2014-07-01
Journal Title
Plant Cell
Publisher
American Society of Plant Biologists
Acknowledgement
This work was supported by the Odysseus Program of the Research Foundation-Flanders (J.F.).
Volume
26
Issue
7
Page
3062 - 3076
IST-REx-ID
Cite this
Naramoto S, Otegui M, Kutsuna N, et al. Insights into the localization and function of the membrane trafficking regulator GNOM ARF-GEF at the Golgi apparatus in Arabidopsis. Plant Cell. 2014;26(7):3062-3076. doi:10.1105/tpc.114.125880
Naramoto, S., Otegui, M., Kutsuna, N., De Rycke, R., Dainobu, T., Karampelias, M., … Friml, J. (2014). Insights into the localization and function of the membrane trafficking regulator GNOM ARF-GEF at the Golgi apparatus in Arabidopsis. Plant Cell. American Society of Plant Biologists. https://doi.org/10.1105/tpc.114.125880
Naramoto, Satoshi, Marisa Otegui, Natsumaro Kutsuna, Riet De Rycke, Tomoko Dainobu, Michael Karampelias, Masaru Fujimoto, et al. “Insights into the Localization and Function of the Membrane Trafficking Regulator GNOM ARF-GEF at the Golgi Apparatus in Arabidopsis.” Plant Cell. American Society of Plant Biologists, 2014. https://doi.org/10.1105/tpc.114.125880.
S. Naramoto et al., “Insights into the localization and function of the membrane trafficking regulator GNOM ARF-GEF at the Golgi apparatus in Arabidopsis,” Plant Cell, vol. 26, no. 7. American Society of Plant Biologists, pp. 3062–3076, 2014.
Naramoto S, Otegui M, Kutsuna N, De Rycke R, Dainobu T, Karampelias M, Fujimoto M, Feraru E, Miki D, Fukuda H, Nakano A, Friml J. 2014. Insights into the localization and function of the membrane trafficking regulator GNOM ARF-GEF at the Golgi apparatus in Arabidopsis. Plant Cell. 26(7), 3062–3076.
Naramoto, Satoshi, et al. “Insights into the Localization and Function of the Membrane Trafficking Regulator GNOM ARF-GEF at the Golgi Apparatus in Arabidopsis.” Plant Cell, vol. 26, no. 7, American Society of Plant Biologists, 2014, pp. 3062–76, doi:10.1105/tpc.114.125880.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Open Access