Fast and memory-efficient topological denoising of 2D and 3D scalar fields

Günther D, Jacobson A, Reininghaus J, Seidel H, Sorkine Hornung O, Weinkauf T. 2014. Fast and memory-efficient topological denoising of 2D and 3D scalar fields. IEEE Transactions on Visualization and Computer Graphics. 20(12), 2585–2594.

Download
No fulltext has been uploaded. References only!

Journal Article | Published | English

Scopus indexed
Author
Günther, David; Jacobson, Alec; Reininghaus, JanISTA; Seidel, Hans; Sorkine Hornung, Olga; Weinkauf, Tino
Department
Abstract
(Figure Presented) Data acquisition, numerical inaccuracies, and sampling often introduce noise in measurements and simulations. Removing this noise is often necessary for efficient analysis and visualization of this data, yet many denoising techniques change the minima and maxima of a scalar field. For example, the extrema can appear or disappear, spatially move, and change their value. This can lead to wrong interpretations of the data, e.g., when the maximum temperature over an area is falsely reported being a few degrees cooler because the denoising method is unaware of these features. Recently, a topological denoising technique based on a global energy optimization was proposed, which allows the topology-controlled denoising of 2D scalar fields. While this method preserves the minima and maxima, it is constrained by the size of the data. We extend this work to large 2D data and medium-sized 3D data by introducing a novel domain decomposition approach. It allows processing small patches of the domain independently while still avoiding the introduction of new critical points. Furthermore, we propose an iterative refinement of the solution, which decreases the optimization energy compared to the previous approach and therefore gives smoother results that are closer to the input. We illustrate our technique on synthetic and real-world 2D and 3D data sets that highlight potential applications.
Publishing Year
Date Published
2014-12-31
Journal Title
IEEE Transactions on Visualization and Computer Graphics
Publisher
IEEE
Acknowledgement
RTRA Digiteoproject; ERC grant; SNF award; Intel Doctoral Fellowship; MPC-VCC
Volume
20
Issue
12
Page
2585 - 2594
IST-REx-ID

Cite this

Günther D, Jacobson A, Reininghaus J, Seidel H, Sorkine Hornung O, Weinkauf T. Fast and memory-efficient topological denoising of 2D and 3D scalar fields. IEEE Transactions on Visualization and Computer Graphics. 2014;20(12):2585-2594. doi:10.1109/TVCG.2014.2346432
Günther, D., Jacobson, A., Reininghaus, J., Seidel, H., Sorkine Hornung, O., & Weinkauf, T. (2014). Fast and memory-efficient topological denoising of 2D and 3D scalar fields. IEEE Transactions on Visualization and Computer Graphics. IEEE. https://doi.org/10.1109/TVCG.2014.2346432
Günther, David, Alec Jacobson, Jan Reininghaus, Hans Seidel, Olga Sorkine Hornung, and Tino Weinkauf. “Fast and Memory-Efficient Topological Denoising of 2D and 3D Scalar Fields.” IEEE Transactions on Visualization and Computer Graphics. IEEE, 2014. https://doi.org/10.1109/TVCG.2014.2346432.
D. Günther, A. Jacobson, J. Reininghaus, H. Seidel, O. Sorkine Hornung, and T. Weinkauf, “Fast and memory-efficient topological denoising of 2D and 3D scalar fields,” IEEE Transactions on Visualization and Computer Graphics, vol. 20, no. 12. IEEE, pp. 2585–2594, 2014.
Günther D, Jacobson A, Reininghaus J, Seidel H, Sorkine Hornung O, Weinkauf T. 2014. Fast and memory-efficient topological denoising of 2D and 3D scalar fields. IEEE Transactions on Visualization and Computer Graphics. 20(12), 2585–2594.
Günther, David, et al. “Fast and Memory-Efficient Topological Denoising of 2D and 3D Scalar Fields.” IEEE Transactions on Visualization and Computer Graphics, vol. 20, no. 12, IEEE, 2014, pp. 2585–94, doi:10.1109/TVCG.2014.2346432.

Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar