Protecting centrosomes from fracturing enables efficient cell navigation
Schmitt MT, Kroll J, Ruiz-Fernandez MJA, Hauschild R, Ghosh S, Kameritsch P, Merrin J, Schmid J, Stefanowski K, Thomae AW, Cheng J, Öztan GN, Konopka P, Ortega GC, Penz T, Bach L, Baumjohann D, Bock C, Straub T, Meissner F, Kiermaier E, Renkawitz J. 2025. Protecting centrosomes from fracturing enables efficient cell navigation. Science Advances. 11(17), eadx4047.
Download
Journal Article
| Published
| English
Scopus indexed
Author
Schmitt, Madeleine T.;
Kroll, Janina;
Ruiz-Fernandez, Mauricio J.A.;
Hauschild, RobertISTA
;
Ghosh, Shaunak;
Kameritsch, Petra;
Merrin, JackISTA
;
Schmid, Johanna;
Stefanowski, Kasia;
Thomae, Andreas W.;
Cheng, Jingyuan;
Öztan, Gamze Naz
All


All
Abstract
The centrosome is a microtubule orchestrator, nucleating and anchoring microtubules that grow radially and exert forces on cargos. At the same time, mechanical stresses from the microenvironment and cellular shape changes compress and bend microtubules. Yet, centrosomes are membraneless organelles, raising the question of how centrosomes withstand mechanical forces. Here, we discover that centrosomes can deform and even fracture. We reveal that centrosomes experience deformations during navigational pathfinding within motile cells. Coherence of the centrosome is maintained by Dyrk3 and cNAP1, preventing fracturing by forces. While cells can compensate for the depletion of centriolar-based centrosomes, the fracturing of centrosomes impedes cellular function by generating coexisting microtubule organizing centers that compete during path navigation and thereby cause cellular entanglement in the microenvironment. Our findings show that cells actively maintain the integrity of the centrosome to withstand mechanical forces. These results suggest that centrosome stability preservation is fundamental, given that almost all cells in multicellular organisms experience forces.
Publishing Year
Date Published
2025-04-25
Journal Title
Science Advances
Publisher
AAAS
Acknowledgement
We thank L. Pelkmans and D. Dormann for providing Dyrk3-EGFP plasmids; M. Heuzé for providing a RFP-Pericentrin plasmid; T. Balla for providing a PH-Akt-GFP plasmid; E. Snaar-Jagalska for providing a pLenti-V6.3 Ultra-Chili plasmid; T. Tang for providing CEP120 a plasmid; D. Trono for providing pMD2.G and psSPAX2 plasmids; M. Sixt for providing EB3-mCherry and EMTB-mCherry plasmids as well as 3T3 fibroblasts, Lifeact-GFP Hoxb8 cells, and LX293 cells; M. Duggan for RNA isolation from migrating DCs; M. Schuster from the Biomedical Sequencing Facility at CeMM; J. Schwarz for providing Jurkat T cells; M. Götz for initial transcriptome analysis; M. Götz and F. Merino for discussion and sharing reagents; F. Gärtner for discussions and support; M. Benjamin Braun for critical reading of the manuscript; and the Core Facility Bioimaging, the Core Facility Flow Cytometry, and the Animal Core Facility of the Biomedical Center (BMC) for excellent support.
This work was supported by Peter Hans Hofschneider Professorship of the Stiftung Experimentelle Biomedizin (J.R.); German Research Foundation grant “CRC914, project A12” (J.R); German Research Foundation grant “SPP2332, project 492014049” (J.R.); LMU Institutional Strategy LMU-Excellent within the framework of the German Excellence Initiative (J.R.); Medical & Clinician Scientist Program (MCSP) LMU Munich (J.K.); Deutsche Forschungsgemeinschaft (DFG; German Research Foundation) under Germany’s Excellence Strategy – EXC2151 – 390873048 (D.B.); Deutsche Forschungsgemeinschaft (DFG; German Research Foundation) Grossgeräteantrag 457838313 and under Germany’s Excellence Strategy – EXC 2151 – 390873048 (E.K.); Ministry of Innovation, Science and Research of North-Rhine-Westphalia (fellowship AZ: 421-8.03.03.02-137069) (E.K.); TRA Life and Health (University of Bonn) as part of the Excellence Strategy of the federal and state governments (E.K.); and CZI grant DAF2020-225401 and grant (DOI https://doi.org/10.37921/120055ratwvi) from the Chan Zuckerberg Initiative DAF (R.H.).
Volume
11
Issue
17
Article Number
eadx4047
eISSN
IST-REx-ID
Cite this
Schmitt MT, Kroll J, Ruiz-Fernandez MJA, et al. Protecting centrosomes from fracturing enables efficient cell navigation. Science Advances. 2025;11(17). doi:10.1126/sciadv.adx4047
Schmitt, M. T., Kroll, J., Ruiz-Fernandez, M. J. A., Hauschild, R., Ghosh, S., Kameritsch, P., … Renkawitz, J. (2025). Protecting centrosomes from fracturing enables efficient cell navigation. Science Advances. AAAS. https://doi.org/10.1126/sciadv.adx4047
Schmitt, Madeleine T., Janina Kroll, Mauricio J.A. Ruiz-Fernandez, Robert Hauschild, Shaunak Ghosh, Petra Kameritsch, Jack Merrin, et al. “Protecting Centrosomes from Fracturing Enables Efficient Cell Navigation.” Science Advances. AAAS, 2025. https://doi.org/10.1126/sciadv.adx4047.
M. T. Schmitt et al., “Protecting centrosomes from fracturing enables efficient cell navigation,” Science Advances, vol. 11, no. 17. AAAS, 2025.
Schmitt MT, Kroll J, Ruiz-Fernandez MJA, Hauschild R, Ghosh S, Kameritsch P, Merrin J, Schmid J, Stefanowski K, Thomae AW, Cheng J, Öztan GN, Konopka P, Ortega GC, Penz T, Bach L, Baumjohann D, Bock C, Straub T, Meissner F, Kiermaier E, Renkawitz J. 2025. Protecting centrosomes from fracturing enables efficient cell navigation. Science Advances. 11(17), eadx4047.
Schmitt, Madeleine T., et al. “Protecting Centrosomes from Fracturing Enables Efficient Cell Navigation.” Science Advances, vol. 11, no. 17, eadx4047, AAAS, 2025, doi:10.1126/sciadv.adx4047.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
2025_ScienceAdvance_Schmitt.pdf
2.71 MB
Access Level

Date Uploaded
2025-05-12
MD5 Checksum
e8ba22922fa5b23ccfcce8865f57226c
Export
Marked PublicationsOpen Data ISTA Research Explorer
Sources
PMID: 40279414
PubMed | Europe PMC