Weakly-Supervised Segmentation and Unsupervised Modeling of Natural Images

Kolesnikov A. 2018. Weakly-Supervised Segmentation and Unsupervised Modeling of Natural Images. Institute of Science and Technology Austria.

Download
OA IST-2018-1021-v1+1_thesis-unsigned-pdfa.pdf 12.92 MB [Published Version]

Thesis | PhD | Published | English

Corresponding author has ISTA affiliation

Department
Series Title
ISTA Thesis
Abstract
Modern computer vision systems heavily rely on statistical machine learning models, which typically require large amounts of labeled data to be learned reliably. Moreover, very recently computer vision research widely adopted techniques for representation learning, which further increase the demand for labeled data. However, for many important practical problems there is relatively small amount of labeled data available, so it is problematic to leverage full potential of the representation learning methods. One way to overcome this obstacle is to invest substantial resources into producing large labelled datasets. Unfortunately, this can be prohibitively expensive in practice. In this thesis we focus on the alternative way of tackling the aforementioned issue. We concentrate on methods, which make use of weakly-labeled or even unlabeled data. Specifically, the first half of the thesis is dedicated to the semantic image segmentation task. We develop a technique, which achieves competitive segmentation performance and only requires annotations in a form of global image-level labels instead of dense segmentation masks. Subsequently, we present a new methodology, which further improves segmentation performance by leveraging tiny additional feedback from a human annotator. By using our methods practitioners can greatly reduce the amount of data annotation effort, which is required to learn modern image segmentation models. In the second half of the thesis we focus on methods for learning from unlabeled visual data. We study a family of autoregressive models for modeling structure of natural images and discuss potential applications of these models. Moreover, we conduct in-depth study of one of these applications, where we develop the state-of-the-art model for the probabilistic image colorization task.
Publishing Year
Date Published
2018-05-25
Publisher
Institute of Science and Technology Austria
Acknowledgement
I also gratefully acknowledge the support of NVIDIA Corporation with the donation of the GPUs used for this research.
Page
113
ISSN
IST-REx-ID
197

Cite this

Kolesnikov A. Weakly-Supervised Segmentation and Unsupervised Modeling of Natural Images. 2018. doi:10.15479/AT:ISTA:th_1021
Kolesnikov, A. (2018). Weakly-Supervised Segmentation and Unsupervised Modeling of Natural Images. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_1021
Kolesnikov, Alexander. “Weakly-Supervised Segmentation and Unsupervised Modeling of Natural Images.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:th_1021.
A. Kolesnikov, “Weakly-Supervised Segmentation and Unsupervised Modeling of Natural Images,” Institute of Science and Technology Austria, 2018.
Kolesnikov A. 2018. Weakly-Supervised Segmentation and Unsupervised Modeling of Natural Images. Institute of Science and Technology Austria.
Kolesnikov, Alexander. Weakly-Supervised Segmentation and Unsupervised Modeling of Natural Images. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:th_1021.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Main File(s)
Access Level
OA Open Access
Date Uploaded
2018-12-12
MD5 Checksum
bc678e02468d8ebc39dc7267dfb0a1c4

Source File
Access Level
Restricted Closed Access
Date Uploaded
2019-04-05
MD5 Checksum
bc66973b086da5a043f1162dcfb1fde4

Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar