Maximal Rashba-like spin splitting via kinetic-energy-coupled inversion-symmetry breaking
Sunko V, Rosner H, Kushwaha P, Khim S, Mazzola F, Bawden L, Clark OJ, Riley JM, Kasinathan D, Haverkort MW, Kim TK, Hoesch M, Fujii J, Vobornik I, Mackenzie AP, King PDC. 2017. Maximal Rashba-like spin splitting via kinetic-energy-coupled inversion-symmetry breaking. Nature. 549(7673), 492–496.
Download (ext.)
Journal Article
| Published
| English
Scopus indexed
Author
Sunko, VeronikaISTA
;
Rosner, H.;
Kushwaha, P.;
Khim, S.;
Mazzola, F.;
Bawden, L.;
Clark, O. J.;
Riley, J. M.;
Kasinathan, D.;
Haverkort, M. W.;
Kim, T. K.;
Hoesch, M.
All

All
Abstract
Engineering and enhancing the breaking of inversion symmetry in solids—that is, allowing electrons to differentiate between ‘up’ and ‘down’—is a key goal in condensed-matter physics and materials science because it can be used to stabilize states that are of fundamental interest and also have potential practical applications. Examples include improved ferroelectrics for memory devices and materials that host Majorana zero modes for quantum computing1,2. Although inversion symmetry is naturally broken in several crystalline environments, such as at surfaces and interfaces, maximizing the influence of this effect on the electronic states of interest remains a challenge. Here we present a mechanism for realizing a much larger coupling of inversion-symmetry breaking to itinerant surface electrons than is typically achieved. The key element is a pronounced asymmetry of surface hopping energies—that is, a kinetic-energy-coupled inversion-symmetry breaking, the energy scale of which is a substantial fraction of the bandwidth. Using spin- and angle-resolved photoemission spectroscopy, we demonstrate that such a strong inversion-symmetry breaking, when combined with spin–orbit interactions, can mediate Rashba-like3,4 spin splittings that are much larger than would typically be expected. The energy scale of the inversion-symmetry breaking that we achieve is so large that the spin splitting in the CoO2- and RhO2-derived surface states of delafossite oxides becomes controlled by the full atomic spin–orbit coupling of the 3d and 4d transition metals, resulting in some of the largest known Rashba-like3,4 spin splittings. The core structural building blocks that facilitate the bandwidth-scaled inversion-symmetry breaking are common to numerous materials. Our findings therefore provide opportunities for creating spin-textured states and suggest routes to interfacial control of inversion-symmetry breaking in designer heterostructures of oxides and other material classes.
Publishing Year
Date Published
2017-09-28
Journal Title
Nature
Publisher
Springer Nature
Volume
549
Issue
7673
Page
492-496
ISSN
eISSN
IST-REx-ID
Cite this
Sunko V, Rosner H, Kushwaha P, et al. Maximal Rashba-like spin splitting via kinetic-energy-coupled inversion-symmetry breaking. Nature. 2017;549(7673):492-496. doi:10.1038/nature23898
Sunko, V., Rosner, H., Kushwaha, P., Khim, S., Mazzola, F., Bawden, L., … King, P. D. C. (2017). Maximal Rashba-like spin splitting via kinetic-energy-coupled inversion-symmetry breaking. Nature. Springer Nature. https://doi.org/10.1038/nature23898
Sunko, Veronika, H. Rosner, P. Kushwaha, S. Khim, F. Mazzola, L. Bawden, O. J. Clark, et al. “Maximal Rashba-like Spin Splitting via Kinetic-Energy-Coupled Inversion-Symmetry Breaking.” Nature. Springer Nature, 2017. https://doi.org/10.1038/nature23898.
V. Sunko et al., “Maximal Rashba-like spin splitting via kinetic-energy-coupled inversion-symmetry breaking,” Nature, vol. 549, no. 7673. Springer Nature, pp. 492–496, 2017.
Sunko V, Rosner H, Kushwaha P, Khim S, Mazzola F, Bawden L, Clark OJ, Riley JM, Kasinathan D, Haverkort MW, Kim TK, Hoesch M, Fujii J, Vobornik I, Mackenzie AP, King PDC. 2017. Maximal Rashba-like spin splitting via kinetic-energy-coupled inversion-symmetry breaking. Nature. 549(7673), 492–496.
Sunko, Veronika, et al. “Maximal Rashba-like Spin Splitting via Kinetic-Energy-Coupled Inversion-Symmetry Breaking.” Nature, vol. 549, no. 7673, Springer Nature, 2017, pp. 492–96, doi:10.1038/nature23898.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level

Export
Marked PublicationsOpen Data ISTA Research Explorer
Sources
PMID: 28959958
PubMed | Europe PMC
arXiv 1708.03887