Majority vote of diverse classifiers for late fusion

Morvant E, Habrard A, Ayache S. 2014. Majority vote of diverse classifiers for late fusion. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). IAPR: International Workshop on Structural, Syntactic, and Statistical Pattern Recognition, LNCS, vol. 8621, 153–162.

Download (ext.)

Conference Paper | Published | English

Scopus indexed
Author
Morvant, EmilieISTA ; Habrard, Amaury; Ayache, Stéphane
Department
Series Title
LNCS
Abstract
In the past few years, a lot of attention has been devoted to multimedia indexing by fusing multimodal informations. Two kinds of fusion schemes are generally considered: The early fusion and the late fusion. We focus on late classifier fusion, where one combines the scores of each modality at the decision level. To tackle this problem, we investigate a recent and elegant well-founded quadratic program named MinCq coming from the machine learning PAC-Bayesian theory. MinCq looks for the weighted combination, over a set of real-valued functions seen as voters, leading to the lowest misclassification rate, while maximizing the voters’ diversity. We propose an extension of MinCq tailored to multimedia indexing. Our method is based on an order-preserving pairwise loss adapted to ranking that allows us to improve Mean Averaged Precision measure while taking into account the diversity of the voters that we want to fuse. We provide evidence that this method is naturally adapted to late fusion procedures and confirm the good behavior of our approach on the challenging PASCAL VOC’07 benchmark.
Publishing Year
Date Published
2014-01-01
Proceedings Title
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Publisher
Springer
Volume
8621
Page
153 - 162
Conference
IAPR: International Workshop on Structural, Syntactic, and Statistical Pattern Recognition
Conference Location
Joensuu, Finland
Conference Date
2014-08-20 – 2014-08-22
IST-REx-ID

Cite this

Morvant E, Habrard A, Ayache S. Majority vote of diverse classifiers for late fusion. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol 8621. Springer; 2014:153-162. doi:10.1007/978-3-662-44415-3_16
Morvant, E., Habrard, A., & Ayache, S. (2014). Majority vote of diverse classifiers for late fusion. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 8621, pp. 153–162). Joensuu, Finland: Springer. https://doi.org/10.1007/978-3-662-44415-3_16
Morvant, Emilie, Amaury Habrard, and Stéphane Ayache. “Majority Vote of Diverse Classifiers for Late Fusion.” In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8621:153–62. Springer, 2014. https://doi.org/10.1007/978-3-662-44415-3_16.
E. Morvant, A. Habrard, and S. Ayache, “Majority vote of diverse classifiers for late fusion,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Joensuu, Finland, 2014, vol. 8621, pp. 153–162.
Morvant E, Habrard A, Ayache S. 2014. Majority vote of diverse classifiers for late fusion. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). IAPR: International Workshop on Structural, Syntactic, and Statistical Pattern Recognition, LNCS, vol. 8621, 153–162.
Morvant, Emilie, et al. “Majority Vote of Diverse Classifiers for Late Fusion.” Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8621, Springer, 2014, pp. 153–62, doi:10.1007/978-3-662-44415-3_16.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data ISTA Research Explorer

Sources

arXiv 1404.7796

Search this title in

Google Scholar