Compositional specifications for IOCO testing

Daca P, Henzinger TA, Krenn W, Nickovic D. 2014. Compositional specifications for IOCO testing. IEEE 7th International Conference on Software Testing, Verification and Validation. ICST: International Conference on Software Testing, Verification and Validation, 6823899.


Conference Paper | Published | English

Scopus indexed
Author
Daca, PrzemyslawISTA; Henzinger, Thomas AISTA ; Krenn, Willibald; Nickovic, Dejan
Abstract
Model-based testing is a promising technology for black-box software and hardware testing, in which test cases are generated automatically from high-level specifications. Nowadays, systems typically consist of multiple interacting components and, due to their complexity, testing presents a considerable portion of the effort and cost in the design process. Exploiting the compositional structure of system specifications can considerably reduce the effort in model-based testing. Moreover, inferring properties about the system from testing its individual components allows the designer to reduce the amount of integration testing. In this paper, we study compositional properties of the ioco-testing theory. We propose a new approach to composition and hiding operations, inspired by contract-based design and interface theories. These operations preserve behaviors that are compatible under composition and hiding, and prune away incompatible ones. The resulting specification characterizes the input sequences for which the unit testing of components is sufficient to infer the correctness of component integration without the need for further tests. We provide a methodology that uses these results to minimize integration testing effort, but also to detect potential weaknesses in specifications. While we focus on asynchronous models and the ioco conformance relation, the resulting methodology can be applied to a broader class of systems.
Publishing Year
Date Published
2014-03-01
Proceedings Title
IEEE 7th International Conference on Software Testing, Verification and Validation
Article Number
6823899
Conference
ICST: International Conference on Software Testing, Verification and Validation
Conference Location
Cleveland, USA
Conference Date
2014-03-31 – 2014-04-04
ISSN
IST-REx-ID

Cite this

Daca P, Henzinger TA, Krenn W, Nickovic D. Compositional specifications for IOCO testing. In: IEEE 7th International Conference on Software Testing, Verification and Validation. IEEE; 2014. doi:10.1109/ICST.2014.50
Daca, P., Henzinger, T. A., Krenn, W., & Nickovic, D. (2014). Compositional specifications for IOCO testing. In IEEE 7th International Conference on Software Testing, Verification and Validation. Cleveland, USA: IEEE. https://doi.org/10.1109/ICST.2014.50
Daca, Przemyslaw, Thomas A Henzinger, Willibald Krenn, and Dejan Nickovic. “Compositional Specifications for IOCO Testing.” In IEEE 7th International Conference on Software Testing, Verification and Validation. IEEE, 2014. https://doi.org/10.1109/ICST.2014.50.
P. Daca, T. A. Henzinger, W. Krenn, and D. Nickovic, “Compositional specifications for IOCO testing,” in IEEE 7th International Conference on Software Testing, Verification and Validation, Cleveland, USA, 2014.
Daca P, Henzinger TA, Krenn W, Nickovic D. 2014. Compositional specifications for IOCO testing. IEEE 7th International Conference on Software Testing, Verification and Validation. ICST: International Conference on Software Testing, Verification and Validation, 6823899.
Daca, Przemyslaw, et al. “Compositional Specifications for IOCO Testing.” IEEE 7th International Conference on Software Testing, Verification and Validation, 6823899, IEEE, 2014, doi:10.1109/ICST.2014.50.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access
Material in ISTA:
Earlier Version
Dissertation containing ISTA record

Export

Marked Publications

Open Data ISTA Research Explorer

Sources

arXiv 1904.07083

Search this title in

Google Scholar
ISBN Search