Sensitivity limits of millimeter-wave photonic radiometers based on efficient electro-optic upconverters

Botello G, Sedlmeir F, Rueda Sanchez AR, Abdalmalak K, Brown E, Leuchs G, Preu S, Segovia Vargas D, Strekalov D, Munoz L, Schwefel H. 2018. Sensitivity limits of millimeter-wave photonic radiometers based on efficient electro-optic upconverters. Optica. 5(10), 1210–1219.

Download (ext.)

Journal Article | Published | English

Scopus indexed
Author
Botello, Gabriel; Sedlmeir, Florian; Rueda Sanchez, Alfredo RISTA ; Abdalmalak, Kerlos; Brown, Elliott; Leuchs, Gerd; Preu, Sascha; Segovia Vargas, Daniel; Strekalov, Dmitry; Munoz, Luis; Schwefel, Harald
Department
Abstract
Conventional ultra-high sensitivity detectors in the millimeter-wave range are usually cooled as their own thermal noise at room temperature would mask the weak received radiation. The need for cryogenic systems increases the cost and complexity of the instruments, hindering the development of, among others, airborne and space applications. In this work, the nonlinear parametric upconversion of millimeter-wave radiation to the optical domain inside high-quality (Q) lithium niobate whispering-gallery mode (WGM) resonators is proposed for ultra-low noise detection. We experimentally demonstrate coherent upconversion of millimeter-wave signals to a 1550 nm telecom carrier, with a photon conversion efficiency surpassing the state-of-the-art by 2 orders of magnitude. Moreover, a theoretical model shows that the thermal equilibrium of counterpropagating WGMs is broken by overcoupling the millimeter-wave WGM, effectively cooling the upconverted mode and allowing ultra-low noise detection. By theoretically estimating the sensitivity of a correlation radiometer based on the presented scheme, it is found that room-temperature radiometers with better sensitivity than state-of-the-art high-electron-mobility transistor (HEMT)-based radiometers can be designed. This detection paradigm can be used to develop room-temperature instrumentation for radio astronomy, earth observation, planetary missions, and imaging systems.
Publishing Year
Date Published
2018-10-20
Journal Title
Optica
Volume
5
Issue
10
Page
1210 - 1219
ISSN
IST-REx-ID
22

Cite this

Botello G, Sedlmeir F, Rueda Sanchez AR, et al. Sensitivity limits of millimeter-wave photonic radiometers based on efficient electro-optic upconverters. Optica. 2018;5(10):1210-1219. doi:10.1364/OPTICA.5.001210
Botello, G., Sedlmeir, F., Rueda Sanchez, A. R., Abdalmalak, K., Brown, E., Leuchs, G., … Schwefel, H. (2018). Sensitivity limits of millimeter-wave photonic radiometers based on efficient electro-optic upconverters. Optica. https://doi.org/10.1364/OPTICA.5.001210
Botello, Gabriel, Florian Sedlmeir, Alfredo R Rueda Sanchez, Kerlos Abdalmalak, Elliott Brown, Gerd Leuchs, Sascha Preu, et al. “Sensitivity Limits of Millimeter-Wave Photonic Radiometers Based on Efficient Electro-Optic Upconverters.” Optica, 2018. https://doi.org/10.1364/OPTICA.5.001210.
G. Botello et al., “Sensitivity limits of millimeter-wave photonic radiometers based on efficient electro-optic upconverters,” Optica, vol. 5, no. 10. pp. 1210–1219, 2018.
Botello G, Sedlmeir F, Rueda Sanchez AR, Abdalmalak K, Brown E, Leuchs G, Preu S, Segovia Vargas D, Strekalov D, Munoz L, Schwefel H. 2018. Sensitivity limits of millimeter-wave photonic radiometers based on efficient electro-optic upconverters. Optica. 5(10), 1210–1219.
Botello, Gabriel, et al. “Sensitivity Limits of Millimeter-Wave Photonic Radiometers Based on Efficient Electro-Optic Upconverters.” Optica, vol. 5, no. 10, 2018, pp. 1210–19, doi:10.1364/OPTICA.5.001210.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Search this title in

Google Scholar