Expression of TWISTED DWARF1 lacking its in-plane membrane anchor leads to increased cell elongation and hypermorphic growth
Bailly A, Wang B, Zwiewka M, Pollmann S, Schenck D, Lüthen H, Schulz A, Friml J, Geisler M. 2014. Expression of TWISTED DWARF1 lacking its in-plane membrane anchor leads to increased cell elongation and hypermorphic growth. Plant Journal. 77(1), 108–118.
Download (ext.)
https://doi.org/10.1111/tpj.12369
[Published Version]
Journal Article
| Published
| English
Scopus indexed
Author
Bailly, Aurélien;
Wang, Bangjun;
Zwiewka, Marta;
Pollmann, Stephan;
Schenck, Daniel;
Lüthen, Hartwig;
Schulz, Alexander;
Friml, JiríISTA ;
Geisler, Markus
Department
Abstract
Plant growth is achieved predominantly by cellular elongation, which is thought to be controlled on several levels by apoplastic auxin. Auxin export into the apoplast is achieved by plasma membrane efflux catalysts of the PIN-FORMED (PIN) and ATP-binding cassette protein subfamily B/phosphor- glycoprotein (ABCB/PGP) classes; the latter were shown to depend on interaction with the FKBP42, TWISTED DWARF1 (TWD1). Here by using a transgenic approach in combination with phenotypical, biochemical and cell biological analyses we demonstrate the importance of a putative C-terminal in-plane membrane anchor of TWD1 in the regulation of ABCB-mediated auxin transport. In contrast with dwarfed twd1 loss-of-function alleles, TWD1 gain-of-function lines that lack a putative in-plane membrane anchor (HA-TWD1-Ct) show hypermorphic plant architecture, characterized by enhanced stem length and leaf surface but reduced shoot branching. Greater hypocotyl length is the result of enhanced cell elongation that correlates with reduced polar auxin transport capacity for HA-TWD1-Ct. As a consequence, HA-TWD1-Ct displays higher hypocotyl auxin accumulation, which is shown to result in elevated auxin-induced cell elongation rates. Our data highlight the importance of C-terminal membrane anchoring for TWD1 action, which is required for specific regulation of ABCB-mediated auxin transport. These data support a model in which TWD1 controls lateral ABCB1-mediated export into the apoplast, which is required for auxin-mediated cell elongation.
Publishing Year
Date Published
2014-01-01
Journal Title
Plant Journal
Publisher
Wiley-Blackwell
Volume
77
Issue
1
Page
108 - 118
ISSN
IST-REx-ID
Cite this
Bailly A, Wang B, Zwiewka M, et al. Expression of TWISTED DWARF1 lacking its in-plane membrane anchor leads to increased cell elongation and hypermorphic growth. Plant Journal. 2014;77(1):108-118. doi:10.1111/tpj.12369
Bailly, A., Wang, B., Zwiewka, M., Pollmann, S., Schenck, D., Lüthen, H., … Geisler, M. (2014). Expression of TWISTED DWARF1 lacking its in-plane membrane anchor leads to increased cell elongation and hypermorphic growth. Plant Journal. Wiley-Blackwell. https://doi.org/10.1111/tpj.12369
Bailly, Aurélien, Bangjun Wang, Marta Zwiewka, Stephan Pollmann, Daniel Schenck, Hartwig Lüthen, Alexander Schulz, Jiří Friml, and Markus Geisler. “Expression of TWISTED DWARF1 Lacking Its In-Plane Membrane Anchor Leads to Increased Cell Elongation and Hypermorphic Growth.” Plant Journal. Wiley-Blackwell, 2014. https://doi.org/10.1111/tpj.12369.
A. Bailly et al., “Expression of TWISTED DWARF1 lacking its in-plane membrane anchor leads to increased cell elongation and hypermorphic growth,” Plant Journal, vol. 77, no. 1. Wiley-Blackwell, pp. 108–118, 2014.
Bailly A, Wang B, Zwiewka M, Pollmann S, Schenck D, Lüthen H, Schulz A, Friml J, Geisler M. 2014. Expression of TWISTED DWARF1 lacking its in-plane membrane anchor leads to increased cell elongation and hypermorphic growth. Plant Journal. 77(1), 108–118.
Bailly, Aurélien, et al. “Expression of TWISTED DWARF1 Lacking Its In-Plane Membrane Anchor Leads to Increased Cell Elongation and Hypermorphic Growth.” Plant Journal, vol. 77, no. 1, Wiley-Blackwell, 2014, pp. 108–18, doi:10.1111/tpj.12369.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Open Access