DICE, an efficient system for iterative genomic editing in human pluripotent stem cells

Zhu F, Gamboa M, Farruggio A, Hippenmeyer S, Tasic B, Schüle B, Chen Tsai Y, Calos M. 2014. DICE, an efficient system for iterative genomic editing in human pluripotent stem cells. Nucleic Acids Research. 42(5), e34.

Download
OA IST-2018-961-v1+1_2014_Hippenmeyer_DICE.pdf 11.04 MB [Preprint]

Journal Article | Published | English

Scopus indexed
Author
Zhu, Fangfang; Gamboa, Matthew; Farruggio, Alfonso; Hippenmeyer, SimonISTA ; Tasic, Bosiljka; Schüle, Birgitt; Chen Tsai, Yanru; Calos, Michele
Department
Abstract
To reveal the full potential of human pluripotent stem cells, new methods for rapid, site-specific genomic engineering are needed. Here, we describe a system for precise genetic modification of human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). We identified a novel human locus, H11, located in a safe, intergenic, transcriptionally active region of chromosome 22, as the recipient site, to provide robust, ubiquitous expression of inserted genes. Recipient cell lines were established by site-specific placement of a ‘landing pad’ cassette carrying attP sites for phiC31 and Bxb1 integrases at the H11 locus by spontaneous or TALEN-assisted homologous recombination. Dual integrase cassette exchange (DICE) mediated by phiC31 and Bxb1 integrases was used to insert genes of interest flanked by phiC31 and Bxb1 attB sites at the H11 locus, replacing the landing pad. This system provided complete control over content, direction and copy number of inserted genes, with a specificity of 100%. A series of genes, including mCherry and various combinations of the neural transcription factors LMX1a, FOXA2 and OTX2, were inserted in recipient cell lines derived from H9 ESC, as well as iPSC lines derived from a Parkinson’s disease patient and a normal sibling control. The DICE system offers rapid, efficient and precise gene insertion in ESC and iPSC and is particularly well suited for repeated modifications of the same locus.
Publishing Year
Date Published
2014-03-05
Journal Title
Nucleic Acids Research
Publisher
Oxford University Press
Acknowledgement
California Institute for Regenerative Medicine [RT2-01880 and TR2-01756]. Funding for open access charge: California Institute for Regenerative Medicine [RT2-01880 and TR2-01756] CC BY 3,0
Volume
42
Issue
5
Article Number
e34
IST-REx-ID

Cite this

Zhu F, Gamboa M, Farruggio A, et al. DICE, an efficient system for iterative genomic editing in human pluripotent stem cells. Nucleic Acids Research. 2014;42(5). doi:10.1093/nar/gkt1290
Zhu, F., Gamboa, M., Farruggio, A., Hippenmeyer, S., Tasic, B., Schüle, B., … Calos, M. (2014). DICE, an efficient system for iterative genomic editing in human pluripotent stem cells. Nucleic Acids Research. Oxford University Press. https://doi.org/10.1093/nar/gkt1290
Zhu, Fangfang, Matthew Gamboa, Alfonso Farruggio, Simon Hippenmeyer, Bosiljka Tasic, Birgitt Schüle, Yanru Chen Tsai, and Michele Calos. “DICE, an Efficient System for Iterative Genomic Editing in Human Pluripotent Stem Cells.” Nucleic Acids Research. Oxford University Press, 2014. https://doi.org/10.1093/nar/gkt1290.
F. Zhu et al., “DICE, an efficient system for iterative genomic editing in human pluripotent stem cells,” Nucleic Acids Research, vol. 42, no. 5. Oxford University Press, 2014.
Zhu F, Gamboa M, Farruggio A, Hippenmeyer S, Tasic B, Schüle B, Chen Tsai Y, Calos M. 2014. DICE, an efficient system for iterative genomic editing in human pluripotent stem cells. Nucleic Acids Research. 42(5), e34.
Zhu, Fangfang, et al. “DICE, an Efficient System for Iterative Genomic Editing in Human Pluripotent Stem Cells.” Nucleic Acids Research, vol. 42, no. 5, e34, Oxford University Press, 2014, doi:10.1093/nar/gkt1290.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2018-12-12
MD5 Checksum
e9268f5f96a820f04d7ebbf85927c3cb


Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar