Asymptotic behavior of eigenvalues of Schrödinger type operators with degenerate kinetic energy
Hainzl C, Seiringer R. 2010. Asymptotic behavior of eigenvalues of Schrödinger type operators with degenerate kinetic energy. Mathematische Nachrichten. 283(3), 489–499.
Download (ext.)
Journal Article
| Published
Author
Hainzl, Christian;
Seiringer, RobertISTA
Abstract
We study the eigenvalues of Schrödinger type operators T + λV and their asymptotic behavior in the small coupling limit λ → 0, in the case where the symbol of the kinetic energy, T (p), strongly degenerates on a non-trivial manifold of codimension one.
Publishing Year
Date Published
2010-03-01
Journal Title
Mathematische Nachrichten
Publisher
Wiley-Blackwell
Volume
283
Issue
3
Page
489 - 499
IST-REx-ID
Cite this
Hainzl C, Seiringer R. Asymptotic behavior of eigenvalues of Schrödinger type operators with degenerate kinetic energy. Mathematische Nachrichten. 2010;283(3):489-499. doi:10.1002/mana.200810195
Hainzl, C., & Seiringer, R. (2010). Asymptotic behavior of eigenvalues of Schrödinger type operators with degenerate kinetic energy. Mathematische Nachrichten. Wiley-Blackwell. https://doi.org/10.1002/mana.200810195
Hainzl, Christian, and Robert Seiringer. “Asymptotic Behavior of Eigenvalues of Schrödinger Type Operators with Degenerate Kinetic Energy.” Mathematische Nachrichten. Wiley-Blackwell, 2010. https://doi.org/10.1002/mana.200810195.
C. Hainzl and R. Seiringer, “Asymptotic behavior of eigenvalues of Schrödinger type operators with degenerate kinetic energy,” Mathematische Nachrichten, vol. 283, no. 3. Wiley-Blackwell, pp. 489–499, 2010.
Hainzl C, Seiringer R. 2010. Asymptotic behavior of eigenvalues of Schrödinger type operators with degenerate kinetic energy. Mathematische Nachrichten. 283(3), 489–499.
Hainzl, Christian, and Robert Seiringer. “Asymptotic Behavior of Eigenvalues of Schrödinger Type Operators with Degenerate Kinetic Energy.” Mathematische Nachrichten, vol. 283, no. 3, Wiley-Blackwell, 2010, pp. 489–99, doi:10.1002/mana.200810195.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Open Access