Microscopic derivation of Ginzburg-Landau theory
Frank R, Hainzl C, Seiringer R, Solovej J. 2012. Microscopic derivation of Ginzburg-Landau theory. Journal of the American Mathematical Society. 25(3), 667–713.
Download (ext.)
Journal Article
| Published
Author
Frank, Rupert L;
Hainzl, Christian;
Seiringer, RobertISTA ;
Solovej, Jan P
Abstract
We give the first rigorous derivation of the celebrated Ginzburg-Landau (GL) theory, starting from the microscopic Bardeen-Cooper-Schrieffer (BCS) model. Close to the critical temperature, GL arises as an effective theory on the macroscopic scale. The relevant scaling limit is semiclassical in nature, and semiclassical analysis, with minimal regularity assumptions, plays an important part in our proof.
Publishing Year
Date Published
2012-01-01
Journal Title
Journal of the American Mathematical Society
Publisher
American Mathematical Society
Volume
25
Issue
3
Page
667 - 713
IST-REx-ID
Cite this
Frank R, Hainzl C, Seiringer R, Solovej J. Microscopic derivation of Ginzburg-Landau theory. Journal of the American Mathematical Society. 2012;25(3):667-713. doi:10.1090/S0894-0347-2012-00735-8
Frank, R., Hainzl, C., Seiringer, R., & Solovej, J. (2012). Microscopic derivation of Ginzburg-Landau theory. Journal of the American Mathematical Society. American Mathematical Society. https://doi.org/10.1090/S0894-0347-2012-00735-8
Frank, Rupert, Christian Hainzl, Robert Seiringer, and Jan Solovej. “Microscopic Derivation of Ginzburg-Landau Theory.” Journal of the American Mathematical Society. American Mathematical Society, 2012. https://doi.org/10.1090/S0894-0347-2012-00735-8.
R. Frank, C. Hainzl, R. Seiringer, and J. Solovej, “Microscopic derivation of Ginzburg-Landau theory,” Journal of the American Mathematical Society, vol. 25, no. 3. American Mathematical Society, pp. 667–713, 2012.
Frank R, Hainzl C, Seiringer R, Solovej J. 2012. Microscopic derivation of Ginzburg-Landau theory. Journal of the American Mathematical Society. 25(3), 667–713.
Frank, Rupert, et al. “Microscopic Derivation of Ginzburg-Landau Theory.” Journal of the American Mathematical Society, vol. 25, no. 3, American Mathematical Society, 2012, pp. 667–713, doi:10.1090/S0894-0347-2012-00735-8.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Open Access