Inhomogeneous cubic congruences and rational points on del Pezzo surfaces
Baier S, Browning TD. 2013. Inhomogeneous cubic congruences and rational points on del Pezzo surfaces. Journal fur die Reine und Angewandte Mathematik. (680), 69–151.
Download (ext.)
Journal Article
| Published
Author
Baier, Stephan;
Browning, Timothy DISTA
Abstract
For given non-zero integers a, b, q we investigate the density of solutions (x; y) ∈ ℤ2 to the binary cubic congruence ax2 + by3 ≡ 0 mod q, and use it to establish the Manin conjecture for a singular del Pezzo surface of degree 2 defined over ℚ.
Publishing Year
Date Published
2013-07-01
Journal Title
Journal fur die Reine und Angewandte Mathematik
Publisher
Walter de Gruyter
Issue
680
Page
69 - 151
IST-REx-ID
Cite this
Baier S, Browning TD. Inhomogeneous cubic congruences and rational points on del Pezzo surfaces. Journal fur die Reine und Angewandte Mathematik. 2013;(680):69-151. doi:10.1515/crelle.2012.039
Baier, S., & Browning, T. D. (2013). Inhomogeneous cubic congruences and rational points on del Pezzo surfaces. Journal Fur Die Reine Und Angewandte Mathematik. Walter de Gruyter. https://doi.org/10.1515/crelle.2012.039
Baier, Stephan, and Timothy D Browning. “Inhomogeneous Cubic Congruences and Rational Points on Del Pezzo Surfaces.” Journal Fur Die Reine Und Angewandte Mathematik. Walter de Gruyter, 2013. https://doi.org/10.1515/crelle.2012.039.
S. Baier and T. D. Browning, “Inhomogeneous cubic congruences and rational points on del Pezzo surfaces,” Journal fur die Reine und Angewandte Mathematik, no. 680. Walter de Gruyter, pp. 69–151, 2013.
Baier S, Browning TD. 2013. Inhomogeneous cubic congruences and rational points on del Pezzo surfaces. Journal fur die Reine und Angewandte Mathematik. (680), 69–151.
Baier, Stephan, and Timothy D. Browning. “Inhomogeneous Cubic Congruences and Rational Points on Del Pezzo Surfaces.” Journal Fur Die Reine Und Angewandte Mathematik, no. 680, Walter de Gruyter, 2013, pp. 69–151, doi:10.1515/crelle.2012.039.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Open Access