Auxin reflux between the endodermis and pericycle promotes lateral root initiation

Marhavý P, Vanstraelen M, De Rybel B, Zhaojun D, Bennett M, Beeckman T, Benková E. 2013. Auxin reflux between the endodermis and pericycle promotes lateral root initiation. EMBO Journal. 32(1), 149–158.


Journal Article | Published | English

Scopus indexed
Author
Marhavy, PeterISTA ; Vanstraelen, Marleen; De Rybel, Bert; Zhaojun, Ding; Bennett, Malcolm; Beeckman, Tom; Benková, EvaISTA
Department
Abstract
Lateral root (LR) formation is initiated when pericycle cells accumulate auxin, thereby acquiring founder cell (FC) status and triggering asymmetric cell divisions, giving rise to a new primordium. How this auxin maximum in pericycle cells builds up and remains focused is not understood. We report that the endodermis plays an active role in the regulation of auxin accumulation and is instructive for FCs to progress during the LR initiation (LRI) phase. We describe the functional importance of a PIN3 (PIN-formed) auxin efflux carrier-dependent hormone reflux pathway between overlaying endodermal and pericycle FCs. Disrupting this reflux pathway causes dramatic defects in the progress of FCs towards the next initiation phase. Our data identify an unexpected regulatory function for the endodermis in LRI as part of the fine-tuning mechanism that appears to act as a check point in LR organogenesis after FCs are specified.
Publishing Year
Date Published
2013-01-09
Journal Title
EMBO Journal
Volume
32
Issue
1
Page
149 - 158
IST-REx-ID

Cite this

Marhavý P, Vanstraelen M, De Rybel B, et al. Auxin reflux between the endodermis and pericycle promotes lateral root initiation. EMBO Journal. 2013;32(1):149-158. doi:10.1038/emboj.2012.303
Marhavý, P., Vanstraelen, M., De Rybel, B., Zhaojun, D., Bennett, M., Beeckman, T., & Benková, E. (2013). Auxin reflux between the endodermis and pericycle promotes lateral root initiation. EMBO Journal. Wiley-Blackwell. https://doi.org/10.1038/emboj.2012.303
Marhavý, Peter, Marleen Vanstraelen, Bert De Rybel, Ding Zhaojun, Malcolm Bennett, Tom Beeckman, and Eva Benková. “Auxin Reflux between the Endodermis and Pericycle Promotes Lateral Root Initiation.” EMBO Journal. Wiley-Blackwell, 2013. https://doi.org/10.1038/emboj.2012.303.
P. Marhavý et al., “Auxin reflux between the endodermis and pericycle promotes lateral root initiation,” EMBO Journal, vol. 32, no. 1. Wiley-Blackwell, pp. 149–158, 2013.
Marhavý P, Vanstraelen M, De Rybel B, Zhaojun D, Bennett M, Beeckman T, Benková E. 2013. Auxin reflux between the endodermis and pericycle promotes lateral root initiation. EMBO Journal. 32(1), 149–158.
Marhavý, Peter, et al. “Auxin Reflux between the Endodermis and Pericycle Promotes Lateral Root Initiation.” EMBO Journal, vol. 32, no. 1, Wiley-Blackwell, 2013, pp. 149–58, doi:10.1038/emboj.2012.303.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data ISTA Research Explorer

Sources

PMID: 23178590
PubMed | Europe PMC

Search this title in

Google Scholar