Can the evolution of multicellularity be anticipated in the exploration of the solar system?

de Vladar H, Chela Flores J. 2012.Can the evolution of multicellularity be anticipated in the exploration of the solar system? In: Life on Earth and other planetary bodies. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol. 24, 387–405.

Download
No fulltext has been uploaded. References only!

Book Chapter | Published | English
Author
Vladar, HaroldISTA ; Chela Flores, Julian
Department
Series Title
Cellular Origin, Life in Extreme Habitats and Astrobiology
Abstract
The problem of the origin of metazoa is becoming more urgent in the context of astrobiology. By now it is clear that clues to the understanding of this crucial transition in the evolution of life can arise in a fourth pathway besides the three possibilities in the quest for simplicity outlined by Bonner in his classical book. In other words, solar system exploration seems to be one way in the long-term to elucidate the simplicity of evolutionary development. We place these ideas in the context of different inheritance systems, namely the genotypic and phenotypic replicators with limited or unlimited heredity, and ask which of these can support multicellular development, and to which degree of complexity. However, the quest for evidence on the evolution of biotas from planets around other stars does not seem to be feasible with present technology with direct visualization of living organisms on exoplanets. But this may be attempted on the Galilean moons of Jupiter where there is a possibility of detecting reliable biomarkers in the next decade with the Europa Jupiter System Mission, in view of recent progress by landing micropenetrators on planetary, or satellite surfaces. Mars is a second possibility in the inner Solar System, in spite of the multiple difficulties faced by the fleet of past, present and future missions. We discuss a series of preliminary ideas for elucidating the origin of metazoan analogues with available instrumentation in potential payloads of feasible space missions to the Galilean moons.
Publishing Year
Date Published
2012-01-01
Book Title
Life on Earth and other planetary bodies
Volume
24
Page
387 - 405
IST-REx-ID

Cite this

de Vladar H, Chela Flores J. Can the evolution of multicellularity be anticipated in the exploration of the solar system? In: Life on Earth and Other Planetary Bodies. Vol 24. Springer; 2012:387-405. doi:10.1007/978-94-007-4966-5_22
de Vladar, H., & Chela Flores, J. (2012). Can the evolution of multicellularity be anticipated in the exploration of the solar system? In Life on Earth and other planetary bodies (Vol. 24, pp. 387–405). Springer. https://doi.org/10.1007/978-94-007-4966-5_22
Vladar, Harold de, and Julian Chela Flores. “Can the Evolution of Multicellularity Be Anticipated in the Exploration of the Solar System?” In Life on Earth and Other Planetary Bodies, 24:387–405. Springer, 2012. https://doi.org/10.1007/978-94-007-4966-5_22.
H. de Vladar and J. Chela Flores, “Can the evolution of multicellularity be anticipated in the exploration of the solar system?,” in Life on Earth and other planetary bodies, vol. 24, Springer, 2012, pp. 387–405.
de Vladar H, Chela Flores J. 2012.Can the evolution of multicellularity be anticipated in the exploration of the solar system? In: Life on Earth and other planetary bodies. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol. 24, 387–405.
de Vladar, Harold, and Julian Chela Flores. “Can the Evolution of Multicellularity Be Anticipated in the Exploration of the Solar System?” Life on Earth and Other Planetary Bodies, vol. 24, Springer, 2012, pp. 387–405, doi:10.1007/978-94-007-4966-5_22.

Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar