Can secondary contact following range expansion be distinguished from barriers to gene flow?

Bertl J, Ringbauer H, Blum M. 2018. Can secondary contact following range expansion be distinguished from barriers to gene flow? PeerJ. 2018(10), e5325.

Download
OA 2018_PeerJ_Bertl.pdf 1.33 MB [Published Version]

Journal Article | Published | English

Scopus indexed
Author
Bertl, Johanna; Ringbauer, HaraldISTA ; Blum, Michaël
Department
Abstract
Secondary contact is the reestablishment of gene flow between sister populations that have diverged. For instance, at the end of the Quaternary glaciations in Europe, secondary contact occurred during the northward expansion of the populations which had found refugia in the southern peninsulas. With the advent of multi-locus markers, secondary contact can be investigated using various molecular signatures including gradients of allele frequency, admixture clines, and local increase of genetic differentiation. We use coalescent simulations to investigate if molecular data provide enough information to distinguish between secondary contact following range expansion and an alternative evolutionary scenario consisting of a barrier to gene flow in an isolation-by-distance model. We find that an excess of linkage disequilibrium and of genetic diversity at the suture zone is a unique signature of secondary contact. We also find that the directionality index ψ, which was proposed to study range expansion, is informative to distinguish between the two hypotheses. However, although evidence for secondary contact is usually conveyed by statistics related to admixture coefficients, we find that they can be confounded by isolation-by-distance. We recommend to account for the spatial repartition of individuals when investigating secondary contact in order to better reflect the complex spatio-temporal evolution of populations and species.
Publishing Year
Date Published
2018-10-01
Journal Title
PeerJ
Publisher
PeerJ
Acknowledgement
Johanna Bertl was supported by the Vienna Graduate School of Population Genetics (Austrian Science Fund (FWF): W1225-B20) and worked on this project while employed at the Department of Statistics and Operations Research, University of Vienna, Austria. This article was developed in the framework of the Grenoble Alpes Data Institute, which is supported by the French National Research Agency under the “Investissments d’avenir” program (ANR-15-IDEX-02).
Volume
2018
Issue
10
Article Number
e5325
IST-REx-ID
33

Cite this

Bertl J, Ringbauer H, Blum M. Can secondary contact following range expansion be distinguished from barriers to gene flow? PeerJ. 2018;2018(10). doi:10.7717/peerj.5325
Bertl, J., Ringbauer, H., & Blum, M. (2018). Can secondary contact following range expansion be distinguished from barriers to gene flow? PeerJ. PeerJ. https://doi.org/10.7717/peerj.5325
Bertl, Johanna, Harald Ringbauer, and Michaël Blum. “Can Secondary Contact Following Range Expansion Be Distinguished from Barriers to Gene Flow?” PeerJ. PeerJ, 2018. https://doi.org/10.7717/peerj.5325.
J. Bertl, H. Ringbauer, and M. Blum, “Can secondary contact following range expansion be distinguished from barriers to gene flow?,” PeerJ, vol. 2018, no. 10. PeerJ, 2018.
Bertl J, Ringbauer H, Blum M. 2018. Can secondary contact following range expansion be distinguished from barriers to gene flow? PeerJ. 2018(10), e5325.
Bertl, Johanna, et al. “Can Secondary Contact Following Range Expansion Be Distinguished from Barriers to Gene Flow?” PeerJ, vol. 2018, no. 10, e5325, PeerJ, 2018, doi:10.7717/peerj.5325.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
Access Level
OA Open Access
Date Uploaded
2018-12-17
MD5 Checksum
3334886c4b39678db4c4b74299ca14ba


Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Sources

PMID: 30294507
PubMed | Europe PMC

Search this title in

Google Scholar