Fe3O4@NiFexOy nanoparticles with enhanced electrocatalytic properties for oxygen evolution in carbonate electrolyte

Luo Z, Márti Sánchez S, Nafria R, Joshua G, De La Mata M, Guardia P, Flox C, Martínez Boubeta C, Simeonidis K, Llorca J, Morante J, Arbiol J, Ibáñez M, Cabot A. 2016. Fe3O4@NiFexOy nanoparticles with enhanced electrocatalytic properties for oxygen evolution in carbonate electrolyte. ACS Applied Materials and Interfaces. 8(43), 29461–29469.

Download
No fulltext has been uploaded. References only!

Journal Article | Published | English
Author
Luo, Zhishan; Márti Sánchez, Sara; Nafria, Raquel; Joshua, Gihan; De La Mata, Maria; Guardia, Pablo; Flox, Christina; Martínez Boubeta, Carlos; Simeonidis, Konstantinos; Llorca, Jordi; Morante, Joan; Arbiol, Jordi
All
Abstract
The design and engineering of earth-abundant catalysts that are both cost-effective and highly active for water splitting are crucial challenges in a number of energy conversion and storage technologies. In this direction, herein we report the synthesis of Fe3O4@NiFexOy core-shell nanoheterostructures and the characterization of their electrocatalytic performance toward the oxygen evolution reaction (OER). Such nanoparticles (NPs) were produced by a two-step synthesis procedure involving the colloidal synthesis of Fe3O4 nanocubes with a defective shell and the posterior diffusion of nickel cations within this defective shell. Fe3O4@NiFexOy NPs were subsequently spin-coated over ITO-covered glass and their electrocatalytic activity toward water oxidation in carbonate electrolyte was characterized. Fe3O4@NiFexOy catalysts reached current densities above 1 mA/cm2 with a 410 mV overpotential and Tafel slopes of 48 mV/dec, which is among the best electrocatalytic performances reported in carbonate electrolyte.
Publishing Year
Date Published
2016-11-02
Journal Title
ACS Applied Materials and Interfaces
Acknowledgement
This work was supported by the European Regional Development Funds and the Spanish MINECO project BOOSTER, TNT-FUELS, e-TNT, Severo Ochoa Program (MINECO, Grant SEV-2013-0295), and PEC?CO2. Z.L. thanks the China Scholarship Council for scholarship support. P.G. acknowledges the People Programme (Marie Curie Actions) of the FP7/2007-2013 European Union Program (TECNIOspring grant agreement no. 600388) and the Agency for Business Competitiveness of the Government of Catalonia, ACCIO. M.I. thanks AGAUR for Beatriu de Pinos postdoctoral grant (2013 BP-A00344).
Volume
8
Issue
43
Page
29461 - 29469
IST-REx-ID
371

Cite this

Luo Z, Márti Sánchez S, Nafria R, et al. Fe3O4@NiFexOy nanoparticles with enhanced electrocatalytic properties for oxygen evolution in carbonate electrolyte. ACS Applied Materials and Interfaces. 2016;8(43):29461-29469. doi:10.1021/acsami.6b09888
Luo, Z., Márti Sánchez, S., Nafria, R., Joshua, G., De La Mata, M., Guardia, P., … Cabot, A. (2016). Fe3O4@NiFexOy nanoparticles with enhanced electrocatalytic properties for oxygen evolution in carbonate electrolyte. ACS Applied Materials and Interfaces. American Chemical Society. https://doi.org/10.1021/acsami.6b09888
Luo, Zhishan, Sara Márti Sánchez, Raquel Nafria, Gihan Joshua, Maria De La Mata, Pablo Guardia, Christina Flox, et al. “Fe3O4@NiFexOy Nanoparticles with Enhanced Electrocatalytic Properties for Oxygen Evolution in Carbonate Electrolyte.” ACS Applied Materials and Interfaces. American Chemical Society, 2016. https://doi.org/10.1021/acsami.6b09888.
Z. Luo et al., “Fe3O4@NiFexOy nanoparticles with enhanced electrocatalytic properties for oxygen evolution in carbonate electrolyte,” ACS Applied Materials and Interfaces, vol. 8, no. 43. American Chemical Society, pp. 29461–29469, 2016.
Luo Z, Márti Sánchez S, Nafria R, Joshua G, De La Mata M, Guardia P, Flox C, Martínez Boubeta C, Simeonidis K, Llorca J, Morante J, Arbiol J, Ibáñez M, Cabot A. 2016. Fe3O4@NiFexOy nanoparticles with enhanced electrocatalytic properties for oxygen evolution in carbonate electrolyte. ACS Applied Materials and Interfaces. 8(43), 29461–29469.
Luo, Zhishan, et al. “Fe3O4@NiFexOy Nanoparticles with Enhanced Electrocatalytic Properties for Oxygen Evolution in Carbonate Electrolyte.” ACS Applied Materials and Interfaces, vol. 8, no. 43, American Chemical Society, 2016, pp. 29461–69, doi:10.1021/acsami.6b09888.

Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar