On parameter learning in CRF-based approaches to object class image segmentation
Nowozin S, Gehler P, Lampert C. 2010. On parameter learning in CRF-based approaches to object class image segmentation. ECCV: European Conference on Computer Vision, LNCS, vol. 6316, 98–111.
Download
Conference Paper
| Published
| English
Scopus indexed
Author
Nowozin, Sebastian;
Gehler, Peter;
Lampert , ChristophISTA
Department
Series Title
LNCS
Abstract
Recent progress in per-pixel object class labeling of natural images can be attributed to the use of multiple types of image features and sound statistical learning approaches. Within the latter, Conditional Random Fields (CRF) are prominently used for their ability to represent interactions between random variables. Despite their popularity in computer vision, parameter learning for CRFs has remained difficult, popular approaches being cross-validation and piecewise training.
In this work, we propose a simple yet expressive tree-structured CRF based on a recent hierarchical image segmentation method. Our model combines and weights multiple image features within a hierarchical representation and allows simple and efficient globally-optimal learning of ≈ 105 parameters. The tractability of our model allows us to pose and answer some of the open questions regarding parameter learning applying to CRF-based approaches. The key findings for learning CRF models are, from the obvious to the surprising, i) multiple image features always help, ii) the limiting dimension with respect to current models is the amount of training data, iii) piecewise training is competitive, iv) current methods for max-margin training fail for models with many parameters.
Publishing Year
Date Published
2010-11-04
Publisher
Springer
Volume
6316
Page
98 - 111
Conference
ECCV: European Conference on Computer Vision
Conference Location
Heraklion, Crete, Greece
Conference Date
2010-09-05 – 2010-09-11
IST-REx-ID
Cite this
Nowozin S, Gehler P, Lampert C. On parameter learning in CRF-based approaches to object class image segmentation. In: Vol 6316. Springer; 2010:98-111. doi:10.1007/978-3-642-15567-3_8
Nowozin, S., Gehler, P., & Lampert, C. (2010). On parameter learning in CRF-based approaches to object class image segmentation (Vol. 6316, pp. 98–111). Presented at the ECCV: European Conference on Computer Vision, Heraklion, Crete, Greece: Springer. https://doi.org/10.1007/978-3-642-15567-3_8
Nowozin, Sebastian, Peter Gehler, and Christoph Lampert. “On Parameter Learning in CRF-Based Approaches to Object Class Image Segmentation,” 6316:98–111. Springer, 2010. https://doi.org/10.1007/978-3-642-15567-3_8.
S. Nowozin, P. Gehler, and C. Lampert, “On parameter learning in CRF-based approaches to object class image segmentation,” presented at the ECCV: European Conference on Computer Vision, Heraklion, Crete, Greece, 2010, vol. 6316, pp. 98–111.
Nowozin S, Gehler P, Lampert C. 2010. On parameter learning in CRF-based approaches to object class image segmentation. ECCV: European Conference on Computer Vision, LNCS, vol. 6316, 98–111.
Nowozin, Sebastian, et al. On Parameter Learning in CRF-Based Approaches to Object Class Image Segmentation. Vol. 6316, Springer, 2010, pp. 98–111, doi:10.1007/978-3-642-15567-3_8.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Main File(s)
File Name
2010_ECCV_Nowozin.pdf
4.09 MB
Access Level
Open Access
Date Uploaded
2020-05-19
MD5 Checksum
3716e10e161f7c714fd17ec193a223c3