Mean-payoff automaton expressions
Chatterjee K, Doyen L, Edelsbrunner H, Henzinger TA, Rannou P. 2010. Mean-payoff automaton expressions. CONCUR: Concurrency Theory, LNCS, vol. 6269, 269–283.
Download
Conference Paper
| Published
| English
Scopus indexed
Author
Chatterjee, KrishnenduISTA ;
Doyen, Laurent;
Edelsbrunner, HerbertISTA ;
Henzinger, Thomas AISTA ;
Rannou, Philippe
Corresponding author has ISTA affiliation
Series Title
LNCS
Abstract
Quantitative languages are an extension of boolean languages that assign to each word a real number. Mean-payoff automata are finite automata with numerical weights on transitions that assign to each infinite path the long-run average of the transition weights. When the mode of branching of the automaton is deterministic, nondeterministic, or alternating, the corresponding class of quantitative languages is not robust as it is not closed under the pointwise operations of max, min, sum, and numerical complement. Nondeterministic and alternating mean-payoff automata are not decidable either, as the quantitative generalization of the problems of universality and language inclusion is undecidable. We introduce a new class of quantitative languages, defined by mean-payoff automaton expressions, which is robust and decidable: it is closed under the four pointwise operations, and we show that all decision problems are decidable for this class. Mean-payoff automaton expressions subsume deterministic meanpayoff automata, and we show that they have expressive power incomparable to nondeterministic and alternating mean-payoff automata. We also present for the first time an algorithm to compute distance between two quantitative languages, and in our case the quantitative languages are given as mean-payoff automaton expressions.
Publishing Year
Date Published
2010-11-18
Publisher
Schloss Dagstuhl - Leibniz-Zentrum für Informatik
Volume
6269
Page
269 - 283
Conference
CONCUR: Concurrency Theory
Conference Location
Paris, France
Conference Date
2010-08-31 – 2010-09-03
IST-REx-ID
Cite this
Chatterjee K, Doyen L, Edelsbrunner H, Henzinger TA, Rannou P. Mean-payoff automaton expressions. In: Vol 6269. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2010:269-283. doi:10.1007/978-3-642-15375-4_19
Chatterjee, K., Doyen, L., Edelsbrunner, H., Henzinger, T. A., & Rannou, P. (2010). Mean-payoff automaton expressions (Vol. 6269, pp. 269–283). Presented at the CONCUR: Concurrency Theory, Paris, France: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.1007/978-3-642-15375-4_19
Chatterjee, Krishnendu, Laurent Doyen, Herbert Edelsbrunner, Thomas A Henzinger, and Philippe Rannou. “Mean-Payoff Automaton Expressions,” 6269:269–83. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2010. https://doi.org/10.1007/978-3-642-15375-4_19.
K. Chatterjee, L. Doyen, H. Edelsbrunner, T. A. Henzinger, and P. Rannou, “Mean-payoff automaton expressions,” presented at the CONCUR: Concurrency Theory, Paris, France, 2010, vol. 6269, pp. 269–283.
Chatterjee K, Doyen L, Edelsbrunner H, Henzinger TA, Rannou P. 2010. Mean-payoff automaton expressions. CONCUR: Concurrency Theory, LNCS, vol. 6269, 269–283.
Chatterjee, Krishnendu, et al. Mean-Payoff Automaton Expressions. Vol. 6269, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2010, pp. 269–83, doi:10.1007/978-3-642-15375-4_19.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Main File(s)
File Name
Access Level
Open Access
Date Uploaded
2018-12-12
MD5 Checksum
4f753ae99d076553fb8733e2c8b390e2