Finitary winning in omega-regular games
Chatterjee K, Henzinger TA, Horn F. 2009. Finitary winning in omega-regular games. ACM Transactions on Computational Logic (TOCL). 11(1), 1.
Download
Journal Article
| Published
| English
Scopus indexed
Corresponding author has ISTA affiliation
Department
Abstract
Games on graphs with omega-regular objectives provide a model for the control and synthesis of reactive systems. Every omega-regular objective can be decomposed into a safety part and a liveness part. The liveness part ensures that something good happens “eventually.” Two main strengths of the classical, infinite-limit formulation of liveness are robustness (independence from the granularity of transitions) and simplicity (abstraction of complicated time bounds). However, the classical liveness formulation suffers from the drawback that the time until something good happens may be unbounded. A stronger formulation of liveness, so-called finitary liveness, overcomes this drawback, while still retaining robustness and simplicity. Finitary liveness requires that there exists an unknown, fixed bound b such that something good happens within b transitions. While for one-shot liveness (reachability) objectives, classical and finitary liveness coincide, for repeated liveness (Buchi) objectives, the finitary formulation is strictly stronger. In this work we study games with finitary parity and Streett objectives. We prove the determinacy of these games, present algorithms for solving these games, and characterize the memory requirements of winning strategies. We show that finitary parity games can be solved in polynomial time, which is not known for infinitary parity games. For finitary Streett games, we give an EXPTIME algorithm and show that the problem is NP-hard. Our algorithms can be used, for example, for synthesizing controllers that do not let the response time of a system increase without bound.
Publishing Year
Date Published
2009-10-01
Journal Title
ACM Transactions on Computational Logic (TOCL)
Publisher
ACM
Acknowledgement
This research was supported in part by the AFOSR MURI grant F49620-00-1-0327, the NSF grants CCR-0132780, CNS-0720884, and CCR- 225610, by the Swiss National Science Foundation, by the COMBEST project of the European Union, and EU-TMR network Games.
We thank anonymous reviewers for useful comments.
Volume
11
Issue
1
Article Number
1
IST-REx-ID
Cite this
Chatterjee K, Henzinger TA, Horn F. Finitary winning in omega-regular games. ACM Transactions on Computational Logic (TOCL). 2009;11(1). doi:10.1145/1614431.1614432
Chatterjee, K., Henzinger, T. A., & Horn, F. (2009). Finitary winning in omega-regular games. ACM Transactions on Computational Logic (TOCL). ACM. https://doi.org/10.1145/1614431.1614432
Chatterjee, Krishnendu, Thomas A Henzinger, and Florian Horn. “Finitary Winning in Omega-Regular Games.” ACM Transactions on Computational Logic (TOCL). ACM, 2009. https://doi.org/10.1145/1614431.1614432.
K. Chatterjee, T. A. Henzinger, and F. Horn, “Finitary winning in omega-regular games,” ACM Transactions on Computational Logic (TOCL), vol. 11, no. 1. ACM, 2009.
Chatterjee K, Henzinger TA, Horn F. 2009. Finitary winning in omega-regular games. ACM Transactions on Computational Logic (TOCL). 11(1), 1.
Chatterjee, Krishnendu, et al. “Finitary Winning in Omega-Regular Games.” ACM Transactions on Computational Logic (TOCL), vol. 11, no. 1, 1, ACM, 2009, doi:10.1145/1614431.1614432.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Main File(s)
File Name
Access Level
Open Access
Date Uploaded
2018-12-12
MD5 Checksum
139c4586d24f11e5da31fb3a0cf96ef4