Stability of persistence diagrams
Cohen Steiner D, Edelsbrunner H, Harer J. 2007. Stability of persistence diagrams. Discrete & Computational Geometry. 37(1), 103–120.
Download
No fulltext has been uploaded. References only!
Journal Article
| Published
Author
Cohen-Steiner, David;
Edelsbrunner, HerbertISTA ;
Harer, John
Abstract
The persistence diagram of a real-valued function on a topological space is a multiset of points in the extended plane. We prove that under mild assumptions on the function, the persistence diagram is stable: small changes in the function imply only small changes in the diagram. We apply this result to estimating the homology of sets in a metric space and to comparing and classifying geometric shapes.
Publishing Year
Date Published
2007-01-01
Journal Title
Discrete & Computational Geometry
Publisher
Springer
Volume
37
Issue
1
Page
103 - 120
IST-REx-ID
Cite this
Cohen Steiner D, Edelsbrunner H, Harer J. Stability of persistence diagrams. Discrete & Computational Geometry. 2007;37(1):103-120. doi:10.1007/s00454-006-1276-5
Cohen Steiner, D., Edelsbrunner, H., & Harer, J. (2007). Stability of persistence diagrams. Discrete & Computational Geometry. Springer. https://doi.org/10.1007/s00454-006-1276-5
Cohen Steiner, David, Herbert Edelsbrunner, and John Harer. “Stability of Persistence Diagrams.” Discrete & Computational Geometry. Springer, 2007. https://doi.org/10.1007/s00454-006-1276-5.
D. Cohen Steiner, H. Edelsbrunner, and J. Harer, “Stability of persistence diagrams,” Discrete & Computational Geometry, vol. 37, no. 1. Springer, pp. 103–120, 2007.
Cohen Steiner D, Edelsbrunner H, Harer J. 2007. Stability of persistence diagrams. Discrete & Computational Geometry. 37(1), 103–120.
Cohen Steiner, David, et al. “Stability of Persistence Diagrams.” Discrete & Computational Geometry, vol. 37, no. 1, Springer, 2007, pp. 103–20, doi:10.1007/s00454-006-1276-5.