Optimized whole mount in situ immunolocalization for Arabidopsis thaliana root meristems and lateral root primordia
Karampelias M, Tejos R, Friml J, Vanneste S. 2018.Optimized whole mount in situ immunolocalization for Arabidopsis thaliana root meristems and lateral root primordia. In: Root Development. Methods and Protocols. Methods in Molecular Biology, vol. 1761, 131–143.
Download
No fulltext has been uploaded. References only!
Book Chapter
| Published
| English
Scopus indexed
Author
Karampelias, Michael;
Tejos, Ricardo;
Friml, JiríISTA ;
Vanneste, Steffen
Book Editor
Ristova, Daniela;
Barbez, Elke
Department
Series Title
Methods in Molecular Biology
Abstract
Immunolocalization is a valuable tool for cell biology research that allows to rapidly determine the localization and expression levels of endogenous proteins. In plants, whole-mount in situ immunolocalization remains a challenging method, especially in tissues protected by waxy layers and complex cell wall carbohydrates. Here, we present a robust method for whole-mount in situ immunolocalization in primary root meristems and lateral root primordia in Arabidopsis thaliana. For good epitope preservation, fixation is done in an alkaline paraformaldehyde/glutaraldehyde mixture. This fixative is suitable for detecting a wide range of proteins, including integral transmembrane proteins and proteins peripherally attached to the plasma membrane. From initiation until emergence from the primary root, lateral root primordia are surrounded by several layers of differentiated tissues with a complex cell wall composition that interferes with the efficient penetration of all buffers. Therefore, immunolocalization in early lateral root primordia requires a modified method, including a strong solvent treatment for removal of hydrophobic barriers and a specific cocktail of cell wall-degrading enzymes. The presented method allows for easy, reliable, and high-quality in situ detection of the subcellular localization of endogenous proteins in primary and lateral root meristems without the need of time-consuming crosses or making translational fusions to fluorescent proteins.
Publishing Year
Date Published
2018-03-11
Book Title
Root Development. Methods and Protocols
Publisher
Springer
Volume
1761
Page
131 - 143
IST-REx-ID
Cite this
Karampelias M, Tejos R, Friml J, Vanneste S. Optimized whole mount in situ immunolocalization for Arabidopsis thaliana root meristems and lateral root primordia. In: Ristova D, Barbez E, eds. Root Development. Methods and Protocols. Vol 1761. MIMB. Springer; 2018:131-143. doi:10.1007/978-1-4939-7747-5_10
Karampelias, M., Tejos, R., Friml, J., & Vanneste, S. (2018). Optimized whole mount in situ immunolocalization for Arabidopsis thaliana root meristems and lateral root primordia. In D. Ristova & E. Barbez (Eds.), Root Development. Methods and Protocols (Vol. 1761, pp. 131–143). Springer. https://doi.org/10.1007/978-1-4939-7747-5_10
Karampelias, Michael, Ricardo Tejos, Jiří Friml, and Steffen Vanneste. “Optimized Whole Mount in Situ Immunolocalization for Arabidopsis Thaliana Root Meristems and Lateral Root Primordia.” In Root Development. Methods and Protocols, edited by Daniela Ristova and Elke Barbez, 1761:131–43. MIMB. Springer, 2018. https://doi.org/10.1007/978-1-4939-7747-5_10.
M. Karampelias, R. Tejos, J. Friml, and S. Vanneste, “Optimized whole mount in situ immunolocalization for Arabidopsis thaliana root meristems and lateral root primordia,” in Root Development. Methods and Protocols, vol. 1761, D. Ristova and E. Barbez, Eds. Springer, 2018, pp. 131–143.
Karampelias M, Tejos R, Friml J, Vanneste S. 2018.Optimized whole mount in situ immunolocalization for Arabidopsis thaliana root meristems and lateral root primordia. In: Root Development. Methods and Protocols. Methods in Molecular Biology, vol. 1761, 131–143.
Karampelias, Michael, et al. “Optimized Whole Mount in Situ Immunolocalization for Arabidopsis Thaliana Root Meristems and Lateral Root Primordia.” Root Development. Methods and Protocols, edited by Daniela Ristova and Elke Barbez, vol. 1761, Springer, 2018, pp. 131–43, doi:10.1007/978-1-4939-7747-5_10.