Mutations affecting development of the midline and general body shape during zebrafish embryogenesis

Brand M, Heisenberg C-PJ, Warga R, Pelegri F, Karlstrom R, Beuchle D, Picker A, Jiang Y, Furutani Seiki M, Van Eeden F, Granato M, Haffter P, Hammerschmidt M, Kane D, Kelsh R, Mullins M, Odenthal J, Nüsslein Volhard C. 1996. Mutations affecting development of the midline and general body shape during zebrafish embryogenesis. Development. 123(1), 129–142.


Journal Article | Published | English

Scopus indexed
Author
Brand, Michael; Heisenberg, Carl-Philipp ISTA ; Warga, Rachel; Pelegri, Francisco; Karlstrom, Rolf; Beuchle, Dirk; Picker, Alexander; Jiang, Yunjin; Furutani Seiki, Makoto; Van Eeden, Fredericus; Granato, Michael; Haffter, Pascal
All
Abstract
Tissues of the dorsal midline of vertebrate embryos, such as notochord and floor plate, have been implicated in inductive interactions that pattern the neural tube and somites. In our screen for embryonic visible mutations in the zebrafish we found 113 mutations in more than 27 genes with altered body shape, often with additional defects in CNS development. We concentrated on a subgroup of mutations in ten genes (the midline-group) that cause defective development of the floor plate. By using floor plate markers, such as the signaling molecule sonic hedgehog, we show that the schmalspur (sur) gene is needed for early floor plate development, similar to one-eyed-pinhead (oep) and the previously described cyclops (eye) gene. In contrast to oep and cyc, sur embryos show deletions of ventral CNS tissue restricted to the mid- and hindbrain, whereas the forebrain appears largely unaffected. In the underlying mesendodermal tissue of the head, sur is needed only for development of the posterior prechordal plate, whereas oep and eye are required for both anterior and posterior prechordal plate development. Our analysis of sur mutants suggests that defects within the posterior prechordal plate may cause aberrant development of ventral CNS structures in the mid- and hindbrain. Later development of the floor plate is affected in mutant chameleon, you-too, sonic-you, iguana, detour, schmalkars and monorail embryos; these mutants often show additional defects in tissues that are known to depend on signals from notochord and floor plate, For example, sur, con, and yot mutants show reduction of motor neurons; median deletions of brain tissue are seen in sur, con and yot embryos; and eye, con, yet, igu and dtr mutants often show no or abnormal formation of the optic chiasm. We also find fusions of the ventral neurocranium for all midline mutants tested, which may reveal a hitherto unrecognized function of the midline in influencing differentiation of neural crest cells at their destination. As a working hypothesis, we propose that midline-group genes may act to maintain proper structure and inductive function of zebrafish midline tissues.
Publishing Year
Date Published
1996-12-01
Journal Title
Development
Acknowledgement
We would like to thank our colleagues in the zebrafish community for generously sharing antibodies and probes, in particular PhilIngham, Stefan Krauss and Vladimir Korzh, as well as Tom Jessel, Trevor Jowett, Anders Molven, Eric Weinberg and Monte Westerfield. M. B. thanks Steve Wilson for comments on the manuscript, his colleagues at the institute for numerous discussions, Inge Zimmermann for patient sectioning, and Silke Hein for help during the final stages of this work. M. B. was supported by a Helmholtz stipend of the BMFT.
Volume
123
Issue
1
Page
129 - 142
ISSN
IST-REx-ID

Cite this

Brand M, Heisenberg C-PJ, Warga R, et al. Mutations affecting development of the midline and general body shape during zebrafish embryogenesis. Development. 1996;123(1):129-142. doi:10.1242/dev.123.1.129
Brand, M., Heisenberg, C.-P. J., Warga, R., Pelegri, F., Karlstrom, R., Beuchle, D., … Nüsslein Volhard, C. (1996). Mutations affecting development of the midline and general body shape during zebrafish embryogenesis. Development. Company of Biologists. https://doi.org/10.1242/dev.123.1.129
Brand, Michael, Carl-Philipp J Heisenberg, Rachel Warga, Francisco Pelegri, Rolf Karlstrom, Dirk Beuchle, Alexander Picker, et al. “Mutations Affecting Development of the Midline and General Body Shape during Zebrafish Embryogenesis.” Development. Company of Biologists, 1996. https://doi.org/10.1242/dev.123.1.129 .
M. Brand et al., “Mutations affecting development of the midline and general body shape during zebrafish embryogenesis,” Development, vol. 123, no. 1. Company of Biologists, pp. 129–142, 1996.
Brand M, Heisenberg C-PJ, Warga R, Pelegri F, Karlstrom R, Beuchle D, Picker A, Jiang Y, Furutani Seiki M, Van Eeden F, Granato M, Haffter P, Hammerschmidt M, Kane D, Kelsh R, Mullins M, Odenthal J, Nüsslein Volhard C. 1996. Mutations affecting development of the midline and general body shape during zebrafish embryogenesis. Development. 123(1), 129–142.
Brand, Michael, et al. “Mutations Affecting Development of the Midline and General Body Shape during Zebrafish Embryogenesis.” Development, vol. 123, no. 1, Company of Biologists, 1996, pp. 129–42, doi:10.1242/dev.123.1.129 .
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data ISTA Research Explorer

Sources

PMID: 9007235
PubMed | Europe PMC

Search this title in

Google Scholar