Finitary winning in omega-regular games

Chatterjee K, Henzinger TA. 2006. Finitary winning in omega-regular games. TACAS: Tools and Algorithms for the Construction and Analysis of Systems, LNCS, vol. 3920, 257–271.

Download
No fulltext has been uploaded. References only!

Conference Paper | Published
Series Title
LNCS
Abstract
Games on graphs with ω-regular objectives provide a model for the control and synthesis of reactive systems. Every ω-regular objective can be decomposed into a safety part and a liveness part. The liveness part ensures that something good happens “eventually.” Two main strengths of the classical, infinite-limit formulation of liveness are robustness (independence from the granularity of transitions) and simplicity (abstraction of complicated time bounds). However, the classical liveness formulation suffers from the drawback that the time until something good happens may be unbounded. A stronger formulation of liveness, so-called finitary liveness, overcomes this drawback, while still retaining robustness and simplicity. Finitary liveness requires that there exists an unknown, fixed bound b such that something good happens within b transitions. While for one-shot liveness (reachability) objectives, classical and finitary liveness coincide, for repeated liveness (Büchi) objectives, the finitary formulation is strictly stronger. In this work we study games with finitary parity and Streett (fairness) objectives. We prove the determinacy of these games, present algorithms for solving these games, and characterize the memory requirements of winning strategies. Our algorithms can be used, for example, for synthesizing controllers that do not let the response time of a system increase without bound.
Publishing Year
Date Published
2006-03-15
Publisher
Springer
Acknowledgement
This research was supported in part by the AFOSR MURI grant F49620-00-1-0327 and the NSF ITR grant CCR-0225610.
Volume
3920
Page
257 - 271
Conference
TACAS: Tools and Algorithms for the Construction and Analysis of Systems
IST-REx-ID

Cite this

Chatterjee K, Henzinger TA. Finitary winning in omega-regular games. In: Vol 3920. Springer; 2006:257-271. doi:10.1007/11691372_17
Chatterjee, K., & Henzinger, T. A. (2006). Finitary winning in omega-regular games (Vol. 3920, pp. 257–271). Presented at the TACAS: Tools and Algorithms for the Construction and Analysis of Systems, Springer. https://doi.org/10.1007/11691372_17
Chatterjee, Krishnendu, and Thomas A Henzinger. “Finitary Winning in Omega-Regular Games,” 3920:257–71. Springer, 2006. https://doi.org/10.1007/11691372_17.
K. Chatterjee and T. A. Henzinger, “Finitary winning in omega-regular games,” presented at the TACAS: Tools and Algorithms for the Construction and Analysis of Systems, 2006, vol. 3920, pp. 257–271.
Chatterjee K, Henzinger TA. 2006. Finitary winning in omega-regular games. TACAS: Tools and Algorithms for the Construction and Analysis of Systems, LNCS, vol. 3920, 257–271.
Chatterjee, Krishnendu, and Thomas A. Henzinger. Finitary Winning in Omega-Regular Games. Vol. 3920, Springer, 2006, pp. 257–71, doi:10.1007/11691372_17.

Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar