Destabilizing turbulence in pipe flow
Kühnen J, Song B, Scarselli D, Budanur NB, Riedl M, Willis A, Avila M, Hof B. 2018. Destabilizing turbulence in pipe flow. Nature Physics. 14, 386–390.
Download (ext.)
https://arxiv.org/abs/1711.06543
[Preprint]
Journal Article
| Published
| English
Scopus indexed
Author
Kühnen, JakobISTA ;
Song, Baofang;
Scarselli, DavideISTA ;
Budanur, Nazmi BISTA ;
Riedl, MichaelISTA ;
Willis, Ashley;
Avila, Marc;
Hof, BjörnISTA
Corresponding author has ISTA affiliation
Department
Abstract
Turbulence is the major cause of friction losses in transport processes and it is responsible for a drastic drag increase in flows over bounding surfaces. While much effort is invested into developing ways to control and reduce turbulence intensities, so far no methods exist to altogether eliminate turbulence if velocities are sufficiently large. We demonstrate for pipe flow that appropriate distortions to the velocity profile lead to a complete collapse of turbulence and subsequently friction losses are reduced by as much as 90%. Counterintuitively, the return to laminar motion is accomplished by initially increasing turbulence intensities or by transiently amplifying wall shear. Since neither the Reynolds number nor the shear stresses decrease (the latter often increase), these measures are not indicative of turbulence collapse. Instead, an amplification mechanism measuring the interaction between eddies and the mean shear is found to set a threshold below which turbulence is suppressed beyond recovery.
Publishing Year
Date Published
2018-01-08
Journal Title
Nature Physics
Publisher
Nature Publishing Group
Acknowledgement
We acknowledge the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement 306589, the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 737549) and the Deutsche Forschungsgemeinschaft (Project No. FOR 1182) for financial support. We thank our technician P. Maier for providing highly valuable ideas and greatly supporting us in all technical aspects. We thank M. Schaner for technical drawings, construction and design. We thank M. Schwegel for a Matlab code to post-process experimental data.
Volume
14
Page
386-390
IST-REx-ID
Cite this
Kühnen J, Song B, Scarselli D, et al. Destabilizing turbulence in pipe flow. Nature Physics. 2018;14:386-390. doi:10.1038/s41567-017-0018-3
Kühnen, J., Song, B., Scarselli, D., Budanur, N. B., Riedl, M., Willis, A., … Hof, B. (2018). Destabilizing turbulence in pipe flow. Nature Physics. Nature Publishing Group. https://doi.org/10.1038/s41567-017-0018-3
Kühnen, Jakob, Baofang Song, Davide Scarselli, Nazmi B Budanur, Michael Riedl, Ashley Willis, Marc Avila, and Björn Hof. “Destabilizing Turbulence in Pipe Flow.” Nature Physics. Nature Publishing Group, 2018. https://doi.org/10.1038/s41567-017-0018-3.
J. Kühnen et al., “Destabilizing turbulence in pipe flow,” Nature Physics, vol. 14. Nature Publishing Group, pp. 386–390, 2018.
Kühnen J, Song B, Scarselli D, Budanur NB, Riedl M, Willis A, Avila M, Hof B. 2018. Destabilizing turbulence in pipe flow. Nature Physics. 14, 386–390.
Kühnen, Jakob, et al. “Destabilizing Turbulence in Pipe Flow.” Nature Physics, vol. 14, Nature Publishing Group, 2018, pp. 386–90, doi:10.1038/s41567-017-0018-3.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Open Access
Material in ISTA:
Dissertation containing ISTA record
Dissertation containing ISTA record
Dissertation containing ISTA record
Export
Marked PublicationsOpen Data ISTA Research Explorer