The observational power of clocks

Alur R, Courcoubetis C, Henzinger TA. 1994. The observational power of clocks. 5th International Conference on Concurrency Theory. CONCUR: Concurrency Theory, LNCS, vol. 836, 162–177.

Download
No fulltext has been uploaded. References only!

Conference Paper | Published | English
Author
Alur, Rajeev; Courcoubetis, Costas; Henzinger, Thomas AISTA
Series Title
LNCS
Abstract
We develop a theory of equivalences for timed systems. Two systems are equivalent iff external observers cannot observe differences in their behavior. The notion of equivalence depends, therefore, on the distinguishing power of the observers. The power of an observer to measure time results in untimed, clock, and timed equivalences: an untimed observer cannot measure the time difference between events; a clock observer uses a clock to measure time differences with finite precision; a timed observer is able to measure time differences with arbitrary precision. We show that the distinguishing power of clock observers grows with the number of observers, and approaches, in the limit, the distinguishing power of a timed observer. More precisely, given any equivalence for untimed systems, two timed systems are k-clock congruent, for a nonnegative integer k, iff their compositions with every environment that uses k clocks are untimed equivalent. Both k-clock bisimulation congruence and k-clock trace congruence form strict decidable hierarchies that converge towards the corresponding timed equivalences. Moreover, k-clock bisimulation congruence and k-clock trace congruence provide an adequate and abstract semantics for branching-time and linear-time logics with k clocks. Our results impact on the verification of timed systems in two ways. First, our decision procedure for k-clock bisimulation congruence leads to a new, symbolic, decision procedure for timed bisimilarity. Second, timed trace equivalence is known to be undecidable. If the number of environment clocks is bounded, however, then our decision procedure for k-clock trace congruence allows the verification of timed systems in a trace model.
Publishing Year
Date Published
1994-01-01
Proceedings Title
5th International Conference on Concurrency Theory
Acknowledgement
ESPRIT BRA project REACT, National Science Foundation under grant CCR-9200794, United States Air Force Office of Scientific Research contract F49620-93-1-0056
Volume
836
Page
162 - 177
Conference
CONCUR: Concurrency Theory
Conference Location
Uppsala, Sweden
Conference Date
1994-08-22 – 1994-08-25
ISBN
IST-REx-ID

Cite this

Alur R, Courcoubetis C, Henzinger TA. The observational power of clocks. In: 5th International Conference on Concurrency Theory. Vol 836. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 1994:162-177. doi:10.1007/BFb0015008
Alur, R., Courcoubetis, C., & Henzinger, T. A. (1994). The observational power of clocks. In 5th International Conference on Concurrency Theory (Vol. 836, pp. 162–177). Uppsala, Sweden: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.1007/BFb0015008
Alur, Rajeev, Costas Courcoubetis, and Thomas A Henzinger. “The Observational Power of Clocks.” In 5th International Conference on Concurrency Theory, 836:162–77. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 1994. https://doi.org/10.1007/BFb0015008.
R. Alur, C. Courcoubetis, and T. A. Henzinger, “The observational power of clocks,” in 5th International Conference on Concurrency Theory, Uppsala, Sweden, 1994, vol. 836, pp. 162–177.
Alur R, Courcoubetis C, Henzinger TA. 1994. The observational power of clocks. 5th International Conference on Concurrency Theory. CONCUR: Concurrency Theory, LNCS, vol. 836, 162–177.
Alur, Rajeev, et al. “The Observational Power of Clocks.” 5th International Conference on Concurrency Theory, vol. 836, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 1994, pp. 162–77, doi:10.1007/BFb0015008.

Link(s) to Main File(s)
Access Level
Restricted Closed Access

Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar
ISBN Search