The clathrin adaptor complex AP-2 mediates endocytosis of brassinosteroid INSENSITIVE1 in arabidopsis

Di Rubbo S, Irani N, Kim S, Xu Z, Gadeyne A, Dejonghe W, Vanhoutte I, Persiau G, Eeckhout D, Simon S, Song K, Kleine Vehn J, Friml J, De Jaeger G, Van Damme D, Hwang I, Russinova E. 2013. The clathrin adaptor complex AP-2 mediates endocytosis of brassinosteroid INSENSITIVE1 in arabidopsis. Plant Cell. 25(8), 2986–2997.

Download (ext.)

Journal Article | Published | English

Scopus indexed
Author
Di Rubbo, Simone; Irani, Niloufer; Kim, Soo; Xu, Zheng; Gadeyne, Astrid; Dejonghe, Wim; Vanhoutte, Isabelle; Persiau, Geert; Eeckhout, Dominique; Simon, SibuISTA ; Song, Kyungyoung; Kleine Vehn, Jürgen
All
Department
Abstract
Clathrin-mediated endocytosis (CME) regulates many aspects of plant development, including hormone signaling and responses to environmental stresses. Despite the importance of this process, the machinery that regulates CME in plants is largely unknown. In mammals, the heterotetrameric ADAPTOR PROTEIN COMPLEX-2 (AP-2) is required for the formation of clathrin-coated vesicles at the plasma membrane (PM). Although the existence of AP-2 has been predicted in Arabidopsis thaliana, the biochemistry and functionality of the complex is still uncharacterized. Here, we identified all the subunits of the Arabidopsis AP-2 by tandem affinity purification and found that one of the large AP-2 subunits, AP2A1, localized at the PM and interacted with clathrin. Furthermore, endocytosis of the leucine-rich repeat receptor kinase, BRASSINOSTEROID INSENSITIVE1 (BRI1), was shown to depend on AP-2. Knockdown of the two Arabidopsis AP2A genes or overexpression of a dominant-negative version of the medium AP-2 subunit, AP2M, impaired BRI1 endocytosis and enhanced the brassinosteroid signaling. Our data reveal that the CME machinery in Arabidopsis is evolutionarily conserved and that AP-2 functions in receptormediated endocytosis.
Publishing Year
Date Published
2013-08-01
Journal Title
Plant Cell
Publisher
American Society of Plant Biologists
Volume
25
Issue
8
Page
2986 - 2997
IST-REx-ID
509

Cite this

Di Rubbo S, Irani N, Kim S, et al. The clathrin adaptor complex AP-2 mediates endocytosis of brassinosteroid INSENSITIVE1 in arabidopsis. Plant Cell. 2013;25(8):2986-2997. doi:10.1105/tpc.113.114058
Di Rubbo, S., Irani, N., Kim, S., Xu, Z., Gadeyne, A., Dejonghe, W., … Russinova, E. (2013). The clathrin adaptor complex AP-2 mediates endocytosis of brassinosteroid INSENSITIVE1 in arabidopsis. Plant Cell. American Society of Plant Biologists. https://doi.org/10.1105/tpc.113.114058
Di Rubbo, Simone, Niloufer Irani, Soo Kim, Zheng Xu, Astrid Gadeyne, Wim Dejonghe, Isabelle Vanhoutte, et al. “The Clathrin Adaptor Complex AP-2 Mediates Endocytosis of Brassinosteroid INSENSITIVE1 in Arabidopsis.” Plant Cell. American Society of Plant Biologists, 2013. https://doi.org/10.1105/tpc.113.114058.
S. Di Rubbo et al., “The clathrin adaptor complex AP-2 mediates endocytosis of brassinosteroid INSENSITIVE1 in arabidopsis,” Plant Cell, vol. 25, no. 8. American Society of Plant Biologists, pp. 2986–2997, 2013.
Di Rubbo S, Irani N, Kim S, Xu Z, Gadeyne A, Dejonghe W, Vanhoutte I, Persiau G, Eeckhout D, Simon S, Song K, Kleine Vehn J, Friml J, De Jaeger G, Van Damme D, Hwang I, Russinova E. 2013. The clathrin adaptor complex AP-2 mediates endocytosis of brassinosteroid INSENSITIVE1 in arabidopsis. Plant Cell. 25(8), 2986–2997.
Di Rubbo, Simone, et al. “The Clathrin Adaptor Complex AP-2 Mediates Endocytosis of Brassinosteroid INSENSITIVE1 in Arabidopsis.” Plant Cell, vol. 25, no. 8, American Society of Plant Biologists, 2013, pp. 2986–97, doi:10.1105/tpc.113.114058.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data ISTA Research Explorer

Sources

PMID: 23975899
PubMed | Europe PMC

Search this title in

Google Scholar