Clarifying the supercomplex: The higher-order organization of the mitochondrial electron transport chain

Letts JA, Sazanov LA. 2017. Clarifying the supercomplex: The higher-order organization of the mitochondrial electron transport chain. Nature Structural and Molecular Biology. 24(10), 800–808.

Download
OA 29893_2_merged_1501257589_red.pdf 4.12 MB [Submitted Version]

Journal Article | Published | English

Scopus indexed

Corresponding author has ISTA affiliation

Department
Abstract
The oxidative phosphorylation electron transport chain (OXPHOS-ETC) of the inner mitochondrial membrane is composed of five large protein complexes, named CI-CV. These complexes convert energy from the food we eat into ATP, a small molecule used to power a multitude of essential reactions throughout the cell. OXPHOS-ETC complexes are organized into supercomplexes (SCs) of defined stoichiometry: CI forms a supercomplex with CIII2 and CIV (SC I+III2+IV, known as the respirasome), as well as with CIII2 alone (SC I+III2). CIII2 forms a supercomplex with CIV (SC III2+IV) and CV forms dimers (CV2). Recent cryo-EM studies have revealed the structures of SC I+III2+IV and SC I+III2. Furthermore, recent work has shed light on the assembly and function of the SCs. Here we review and compare these recent studies and discuss how they have advanced our understanding of mitochondrial electron transport.
Publishing Year
Date Published
2017-10-05
Journal Title
Nature Structural and Molecular Biology
Publisher
Nature Publishing Group
Volume
24
Issue
10
Page
800 - 808
ISSN
IST-REx-ID
515

Cite this

Letts JA, Sazanov LA. Clarifying the supercomplex: The higher-order organization of the mitochondrial electron transport chain. Nature Structural and Molecular Biology. 2017;24(10):800-808. doi:10.1038/nsmb.3460
Letts, J. A., & Sazanov, L. A. (2017). Clarifying the supercomplex: The higher-order organization of the mitochondrial electron transport chain. Nature Structural and Molecular Biology. Nature Publishing Group. https://doi.org/10.1038/nsmb.3460
Letts, James A, and Leonid A Sazanov. “Clarifying the Supercomplex: The Higher-Order Organization of the Mitochondrial Electron Transport Chain.” Nature Structural and Molecular Biology. Nature Publishing Group, 2017. https://doi.org/10.1038/nsmb.3460.
J. A. Letts and L. A. Sazanov, “Clarifying the supercomplex: The higher-order organization of the mitochondrial electron transport chain,” Nature Structural and Molecular Biology, vol. 24, no. 10. Nature Publishing Group, pp. 800–808, 2017.
Letts JA, Sazanov LA. 2017. Clarifying the supercomplex: The higher-order organization of the mitochondrial electron transport chain. Nature Structural and Molecular Biology. 24(10), 800–808.
Letts, James A., and Leonid A. Sazanov. “Clarifying the Supercomplex: The Higher-Order Organization of the Mitochondrial Electron Transport Chain.” Nature Structural and Molecular Biology, vol. 24, no. 10, Nature Publishing Group, 2017, pp. 800–08, doi:10.1038/nsmb.3460.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Main File(s)
Access Level
OA Open Access
Date Uploaded
2019-11-07
MD5 Checksum
9bc7e8c41b43636dd7566289e511f096


Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar