Non-linear dynamics and alternating ‘flip’ solutions in ferrofluidic Taylor-Couette flow

Altmeyer S. 2018. Non-linear dynamics and alternating ‘flip’ solutions in ferrofluidic Taylor-Couette flow. Journal of Magnetism and Magnetic Materials. 452, 427–441.

Download
OA 2018_Magnetism_Altmeyer.pdf 17.31 MB [Submitted Version]

Journal Article | Published | English

Scopus indexed

Corresponding author has ISTA affiliation

Department
Abstract
This study treats with the influence of a symmetry-breaking transversal magnetic field on the nonlinear dynamics of ferrofluidic Taylor-Couette flow – flow confined between two concentric independently rotating cylinders. We detected alternating ‘flip’ solutions which are flow states featuring typical characteristics of slow-fast-dynamics in dynamical systems. The flip corresponds to a temporal change in the axial wavenumber and we find them to appear either as pure 2-fold axisymmetric (due to the symmetry-breaking nature of the applied transversal magnetic field) or involving non-axisymmetric, helical modes in its interim solution. The latter ones show features of typical ribbon solutions. In any case the flip solutions have a preferential first axial wavenumber which corresponds to the more stable state (slow dynamics) and second axial wavenumber, corresponding to the short appearing more unstable state (fast dynamics). However, in both cases the flip time grows exponential with increasing the magnetic field strength before the flip solutions, living on 2-tori invariant manifolds, cease to exist, with lifetime going to infinity. Further we show that ferrofluidic flow turbulence differ from the classical, ordinary (usually at high Reynolds number) turbulence. The applied magnetic field hinders the free motion of ferrofluid partials and therefore smoothen typical turbulent quantities and features so that speaking of mildly chaotic dynamics seems to be a more appropriate expression for the observed motion.
Publishing Year
Date Published
2018-04-15
Journal Title
Journal of Magnetism and Magnetic Materials
Publisher
Elsevier
Acknowledgement
S.Altmeyer is a Serra Húnter Fellow
Volume
452
Page
427 - 441
IST-REx-ID
519

Cite this

Altmeyer S. Non-linear dynamics and alternating ‘flip’ solutions in ferrofluidic Taylor-Couette flow. Journal of Magnetism and Magnetic Materials. 2018;452:427-441. doi:10.1016/j.jmmm.2017.12.073
Altmeyer, S. (2018). Non-linear dynamics and alternating ‘flip’ solutions in ferrofluidic Taylor-Couette flow. Journal of Magnetism and Magnetic Materials. Elsevier. https://doi.org/10.1016/j.jmmm.2017.12.073
Altmeyer, Sebastian. “Non-Linear Dynamics and Alternating ‘Flip’ Solutions in Ferrofluidic Taylor-Couette Flow.” Journal of Magnetism and Magnetic Materials. Elsevier, 2018. https://doi.org/10.1016/j.jmmm.2017.12.073.
S. Altmeyer, “Non-linear dynamics and alternating ‘flip’ solutions in ferrofluidic Taylor-Couette flow,” Journal of Magnetism and Magnetic Materials, vol. 452. Elsevier, pp. 427–441, 2018.
Altmeyer S. 2018. Non-linear dynamics and alternating ‘flip’ solutions in ferrofluidic Taylor-Couette flow. Journal of Magnetism and Magnetic Materials. 452, 427–441.
Altmeyer, Sebastian. “Non-Linear Dynamics and Alternating ‘Flip’ Solutions in Ferrofluidic Taylor-Couette Flow.” Journal of Magnetism and Magnetic Materials, vol. 452, Elsevier, 2018, pp. 427–41, doi:10.1016/j.jmmm.2017.12.073.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Main File(s)
Access Level
OA Open Access
Date Uploaded
2020-05-14
MD5 Checksum
431f5cd4a628d7ca21161f82b14ccb4f


Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Search this title in

Google Scholar