Earlier Version
Qualitative analysis of concurrent mean-payoff games
Chatterjee K, Ibsen-Jensen R. 2013. Qualitative analysis of concurrent mean-payoff games, IST Austria, 33p.
Download
Technical Report
| Published
| English
Department
Series Title
IST Austria Technical Report
Abstract
We consider concurrent games played by two-players on a finite state graph, where in every round the players simultaneously choose a move, and the current state along with the joint moves determine the successor state. We study the most fundamental objective for concurrent games, namely, mean-payoff or limit-average objective, where a reward is associated to every transition, and the goal of player 1 is to maximize the long-run average of the rewards, and the objective of player 2 is strictly the opposite (i.e., the games are zero-sum). The path constraint for player 1 could be qualitative, i.e., the mean-payoff is the maximal reward, or arbitrarily close to it; or quantitative, i.e., a given threshold between the minimal and maximal reward. We consider the computation of the almost-sure (resp. positive) winning sets, where player 1 can ensure that the path constraint is satisfied with probability 1 (resp. positive probability). Almost-sure winning with qualitative constraint exactly corresponds to the question whether there exists a strategy to ensure that the payoff is the maximal reward of the game. Our main results for qualitative path constraints are as follows: (1) we establish qualitative determinacy results that show for every state either player 1 has a strategy to ensure almost-sure (resp. positive) winning against all player-2 strategies or player 2 has a spoiling strategy to falsify almost-sure (resp. positive) winning against all player-1 strategies; (2) we present optimal strategy complexity results that precisely characterize the classes of strategies required for almost-sure and positive winning for both players; and (3) we present quadratic time algorithms to compute the almost-sure and the positive winning sets, matching the best known bound of the algorithms for much simpler problems (such as reachability objectives). For quantitative constraints we show that a polynomial time solution for the almost-sure or the positive winning set would imply a solution to a long-standing open problem (of solving the value problem of mean-payoff games) that is not known to be in polynomial time.
Publishing Year
Date Published
2013-07-03
Publisher
IST Austria
Page
33
ISSN
IST-REx-ID
Cite this
Chatterjee K, Ibsen-Jensen R. Qualitative Analysis of Concurrent Mean-Payoff Games. IST Austria; 2013. doi:10.15479/AT:IST-2013-126-v1-1
Chatterjee, K., & Ibsen-Jensen, R. (2013). Qualitative analysis of concurrent mean-payoff games. IST Austria. https://doi.org/10.15479/AT:IST-2013-126-v1-1
Chatterjee, Krishnendu, and Rasmus Ibsen-Jensen. Qualitative Analysis of Concurrent Mean-Payoff Games. IST Austria, 2013. https://doi.org/10.15479/AT:IST-2013-126-v1-1.
K. Chatterjee and R. Ibsen-Jensen, Qualitative analysis of concurrent mean-payoff games. IST Austria, 2013.
Chatterjee K, Ibsen-Jensen R. 2013. Qualitative analysis of concurrent mean-payoff games, IST Austria, 33p.
Chatterjee, Krishnendu, and Rasmus Ibsen-Jensen. Qualitative Analysis of Concurrent Mean-Payoff Games. IST Austria, 2013, doi:10.15479/AT:IST-2013-126-v1-1.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Main File(s)
File Name
IST-2013-126-v1+1_soda_full.pdf
434.52 KB
Access Level
Open Access
Date Uploaded
2018-12-12
MD5 Checksum
063868c665beec37bf28160e2a695746