Glycosaminoglycans in extracellular matrix organisation: Are concepts from soft matter physics key to understanding the formation of perineuronal nets?
Richter R, Baranova NS, Day A, Kwok J. 2018. Glycosaminoglycans in extracellular matrix organisation: Are concepts from soft matter physics key to understanding the formation of perineuronal nets? Current Opinion in Structural Biology. 50, 65–74.
Download (ext.)
http://eprints.whiterose.ac.uk/125524/
[Submitted Version]
Journal Article
| Published
| English
Scopus indexed
Author
Richter, Ralf;
Baranova, NataliaISTA ;
Day, Anthony;
Kwok, Jessica
Department
Abstract
Conventional wisdom has it that proteins fold and assemble into definite structures, and that this defines their function. Glycosaminoglycans (GAGs) are different. In most cases the structures they form have a low degree of order, even when interacting with proteins. Here, we discuss how physical features common to all GAGs — hydrophilicity, charge, linearity and semi-flexibility — underpin the overall properties of GAG-rich matrices. By integrating soft matter physics concepts (e.g. polymer brushes and phase separation) with our molecular understanding of GAG–protein interactions, we can better comprehend how GAG-rich matrices assemble, what their properties are, and how they function. Taking perineuronal nets (PNNs) — a GAG-rich matrix enveloping neurons — as a relevant example, we propose that microphase separation determines the holey PNN anatomy that is pivotal to PNN functions.
Publishing Year
Date Published
2018-06-01
Journal Title
Current Opinion in Structural Biology
Publisher
Elsevier
Acknowledgement
This work was supported by the European Research Council [Starting Grant 306435 ‘JELLY’; to RPR], the Spanish Ministry of Competitiveness and Innovation [MAT2014-54867-R, to RPR], the EPSRC Centre for Doctoral Training in Tissue Engineering and Regenerative Medicine — Innovation in Medical and Biological Engineering [EP/L014823/1, to JCFK], the Royal Society [RG160410, to JCFK], Wings for Life [WFL-UK-008/15, to JCFK] and the European Union, the Operational Programme Research, Development and Education in the framework of the project ‘Centre of Reconstructive Neuroscience’ [CZ.02.1.01/0.0./0.0/15_003/0000419, to JCFK]. AJD would like to thank Arthritis Research UK [16539, 19489] and the MRC [76445, G0900538] for funding his work on GAG–protein interactions.
Volume
50
Page
65 - 74
IST-REx-ID
Cite this
Richter R, Baranova NS, Day A, Kwok J. Glycosaminoglycans in extracellular matrix organisation: Are concepts from soft matter physics key to understanding the formation of perineuronal nets? Current Opinion in Structural Biology. 2018;50:65-74. doi:10.1016/j.sbi.2017.12.002
Richter, R., Baranova, N. S., Day, A., & Kwok, J. (2018). Glycosaminoglycans in extracellular matrix organisation: Are concepts from soft matter physics key to understanding the formation of perineuronal nets? Current Opinion in Structural Biology. Elsevier. https://doi.org/10.1016/j.sbi.2017.12.002
Richter, Ralf, Natalia S. Baranova, Anthony Day, and Jessica Kwok. “Glycosaminoglycans in Extracellular Matrix Organisation: Are Concepts from Soft Matter Physics Key to Understanding the Formation of Perineuronal Nets?” Current Opinion in Structural Biology. Elsevier, 2018. https://doi.org/10.1016/j.sbi.2017.12.002.
R. Richter, N. S. Baranova, A. Day, and J. Kwok, “Glycosaminoglycans in extracellular matrix organisation: Are concepts from soft matter physics key to understanding the formation of perineuronal nets?,” Current Opinion in Structural Biology, vol. 50. Elsevier, pp. 65–74, 2018.
Richter R, Baranova NS, Day A, Kwok J. 2018. Glycosaminoglycans in extracellular matrix organisation: Are concepts from soft matter physics key to understanding the formation of perineuronal nets? Current Opinion in Structural Biology. 50, 65–74.
Richter, Ralf, et al. “Glycosaminoglycans in Extracellular Matrix Organisation: Are Concepts from Soft Matter Physics Key to Understanding the Formation of Perineuronal Nets?” Current Opinion in Structural Biology, vol. 50, Elsevier, 2018, pp. 65–74, doi:10.1016/j.sbi.2017.12.002.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Open Access
Export
Marked PublicationsOpen Data ISTA Research Explorer