Poisson–Delaunay Mosaics of Order k

Edelsbrunner H, Nikitenko A. 2019. Poisson–Delaunay Mosaics of Order k. Discrete and Computational Geometry. 62(4), 865–878.

Download
OA 2018_DiscreteCompGeometry_Edelsbrunner.pdf 599.34 KB [Published Version]

Journal Article | Published | English

Scopus indexed

Corresponding author has ISTA affiliation

Department
Abstract
The order-k Voronoi tessellation of a locally finite set 𝑋⊆ℝ𝑛 decomposes ℝ𝑛 into convex domains whose points have the same k nearest neighbors in X. Assuming X is a stationary Poisson point process, we give explicit formulas for the expected number and total area of faces of a given dimension per unit volume of space. We also develop a relaxed version of discrete Morse theory and generalize by counting only faces, for which the k nearest points in X are within a given distance threshold.
Publishing Year
Date Published
2019-12-01
Journal Title
Discrete and Computational Geometry
Publisher
Springer
Volume
62
Issue
4
Page
865–878
ISSN
eISSN
IST-REx-ID

Cite this

Edelsbrunner H, Nikitenko A. Poisson–Delaunay Mosaics of Order k. Discrete and Computational Geometry. 2019;62(4):865–878. doi:10.1007/s00454-018-0049-2
Edelsbrunner, H., & Nikitenko, A. (2019). Poisson–Delaunay Mosaics of Order k. Discrete and Computational Geometry. Springer. https://doi.org/10.1007/s00454-018-0049-2
Edelsbrunner, Herbert, and Anton Nikitenko. “Poisson–Delaunay Mosaics of Order K.” Discrete and Computational Geometry. Springer, 2019. https://doi.org/10.1007/s00454-018-0049-2.
H. Edelsbrunner and A. Nikitenko, “Poisson–Delaunay Mosaics of Order k,” Discrete and Computational Geometry, vol. 62, no. 4. Springer, pp. 865–878, 2019.
Edelsbrunner H, Nikitenko A. 2019. Poisson–Delaunay Mosaics of Order k. Discrete and Computational Geometry. 62(4), 865–878.
Edelsbrunner, Herbert, and Anton Nikitenko. “Poisson–Delaunay Mosaics of Order K.” Discrete and Computational Geometry, vol. 62, no. 4, Springer, 2019, pp. 865–878, doi:10.1007/s00454-018-0049-2.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2019-02-06
MD5 Checksum
f9d00e166efaccb5a76bbcbb4dcea3b4


Material in ISTA:
Dissertation containing ISTA record

Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Sources

arXiv 1709.09380

Search this title in

Google Scholar