Brief Announcement: Performance prediction for coarse-grained locking


Conference Paper | Published | English

Scopus indexed
Author
Aksenov, Vitaly; Alistarh, Dan-AdrianISTA ; Kuznetsov, Petr
Department
Abstract
A standard design pattern found in many concurrent data structures, such as hash tables or ordered containers, is an alternation of parallelizable sections that incur no data conflicts and critical sections that must run sequentially and are protected with locks. A lock can be viewed as a queue that arbitrates the order in which the critical sections are executed, and a natural question is whether we can use stochastic analysis to predict the resulting throughput. As a preliminary evidence to the affirmative, we describe a simple model that can be used to predict the throughput of coarse-grained lock-based algorithms. We show that our model works well for CLH lock, and we expect it to work for other popular lock designs such as TTAS, MCS, etc.
Publishing Year
Date Published
2018-07-23
Proceedings Title
Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing - PODC '18
Publisher
ACM
Page
411-413
Conference
PODC: Principles of Distributed Computing
Conference Location
Egham, United Kingdom
Conference Date
2018-07-23 – 2018-07-27
IST-REx-ID
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Search this title in

Google Scholar
ISBN Search