Universality for random matrix flows with time dependent density
Erdös L, Schnelli K. 2017. Universality for random matrix flows with time dependent density. Annales de l’institut Henri Poincare (B) Probability and Statistics. 53(4), 1606–1656.
Download (ext.)
https://arxiv.org/abs/1504.00650
[Submitted Version]
Journal Article
| Published
| English
Scopus indexed
Author
Corresponding author has ISTA affiliation
Department
Abstract
We show that the Dyson Brownian Motion exhibits local universality after a very short time assuming that local rigidity and level repulsion of the eigenvalues hold. These conditions are verified, hence bulk spectral universality is proven, for a large class of Wigner-like matrices, including deformed Wigner ensembles and ensembles with non-stochastic variance matrices whose limiting densities differ from Wigner's semicircle law.
Publishing Year
Date Published
2017-11-01
Journal Title
Annales de l'institut Henri Poincare (B) Probability and Statistics
Publisher
Institute of Mathematical Statistics
Volume
53
Issue
4
Page
1606 - 1656
ISSN
IST-REx-ID
Cite this
Erdös L, Schnelli K. Universality for random matrix flows with time dependent density. Annales de l’institut Henri Poincare (B) Probability and Statistics. 2017;53(4):1606-1656. doi:10.1214/16-AIHP765
Erdös, L., & Schnelli, K. (2017). Universality for random matrix flows with time dependent density. Annales de l’institut Henri Poincare (B) Probability and Statistics. Institute of Mathematical Statistics. https://doi.org/10.1214/16-AIHP765
Erdös, László, and Kevin Schnelli. “Universality for Random Matrix Flows with Time Dependent Density.” Annales de l’institut Henri Poincare (B) Probability and Statistics. Institute of Mathematical Statistics, 2017. https://doi.org/10.1214/16-AIHP765.
L. Erdös and K. Schnelli, “Universality for random matrix flows with time dependent density,” Annales de l’institut Henri Poincare (B) Probability and Statistics, vol. 53, no. 4. Institute of Mathematical Statistics, pp. 1606–1656, 2017.
Erdös L, Schnelli K. 2017. Universality for random matrix flows with time dependent density. Annales de l’institut Henri Poincare (B) Probability and Statistics. 53(4), 1606–1656.
Erdös, László, and Kevin Schnelli. “Universality for Random Matrix Flows with Time Dependent Density.” Annales de l’institut Henri Poincare (B) Probability and Statistics, vol. 53, no. 4, Institute of Mathematical Statistics, 2017, pp. 1606–56, doi:10.1214/16-AIHP765.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Open Access