Correlated random matrices: Band rigidity and edge universality

Alt J, Erdös L, Krüger TH, Schröder DJ. 2020. Correlated random matrices: Band rigidity and edge universality. Annals of Probability. 48(2), 963–1001.

Download (ext.)

Journal Article | Published | English

Scopus indexed
Department
Abstract
We prove edge universality for a general class of correlated real symmetric or complex Hermitian Wigner matrices with arbitrary expectation. Our theorem also applies to internal edges of the self-consistent density of states. In particular, we establish a strong form of band rigidity which excludes mismatches between location and label of eigenvalues close to internal edges in these general models.
Publishing Year
Date Published
2020-03-01
Journal Title
Annals of Probability
Volume
48
Issue
2
Page
963-1001
ISSN
IST-REx-ID

Cite this

Alt J, Erdös L, Krüger TH, Schröder DJ. Correlated random matrices: Band rigidity and edge universality. Annals of Probability. 2020;48(2):963-1001. doi:10.1214/19-AOP1379
Alt, J., Erdös, L., Krüger, T. H., & Schröder, D. J. (2020). Correlated random matrices: Band rigidity and edge universality. Annals of Probability. Institute of Mathematical Statistics. https://doi.org/10.1214/19-AOP1379
Alt, Johannes, László Erdös, Torben H Krüger, and Dominik J Schröder. “Correlated Random Matrices: Band Rigidity and Edge Universality.” Annals of Probability. Institute of Mathematical Statistics, 2020. https://doi.org/10.1214/19-AOP1379.
J. Alt, L. Erdös, T. H. Krüger, and D. J. Schröder, “Correlated random matrices: Band rigidity and edge universality,” Annals of Probability, vol. 48, no. 2. Institute of Mathematical Statistics, pp. 963–1001, 2020.
Alt J, Erdös L, Krüger TH, Schröder DJ. 2020. Correlated random matrices: Band rigidity and edge universality. Annals of Probability. 48(2), 963–1001.
Alt, Johannes, et al. “Correlated Random Matrices: Band Rigidity and Edge Universality.” Annals of Probability, vol. 48, no. 2, Institute of Mathematical Statistics, 2020, pp. 963–1001, doi:10.1214/19-AOP1379.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access
Material in ISTA:
Dissertation containing ISTA record
Dissertation containing ISTA record

Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Sources

arXiv 1804.07744

Search this title in

Google Scholar