Dietary menthol-induced TRPM8 activation enhances WAT “browning” and ameliorates diet-induced obesity
Jiang C, Zhai M-Z, Yan D, Li D, Li C, Zhang Y, Xiao L, Xiong D, Deng Q, Sun W. 2017. Dietary menthol-induced TRPM8 activation enhances WAT “browning” and ameliorates diet-induced obesity. Oncotarget. 8(43), 75114–75126.
Download
Journal Article
| Published
| English
Scopus indexed
Author
Jiang, Changyu;
Zhai, Ming-ZhuISTA;
Yan, Dong;
Li, Da;
Li, Chen;
Zhang, Yonghong;
Xiao, Lizu;
Xiong, Donglin;
Deng, Qiwen;
Sun, Wuping
Department
Abstract
Beige adipocytes are a new type of recruitable brownish adipocytes, with highly mitochondrial membrane uncoupling protein 1 expression and thermogenesis. Beige adipocytes were found among white adipocytes, especially in subcutaneous white adipose tissue (sWAT). Therefore, beige adipocytes may be involved in the regulation of energy metabolism and fat deposition. Transient receptor potential melastatin 8 (TRPM8), a Ca2+-permeable non-selective cation channel, plays vital roles in the regulation of various cellular functions. It has been reported that TRPM8 activation enhanced the thermogenic function of brown adiposytes. However, the involvement of TRPM8 in the thermogenic function of WAT remains unexplored. Our data revealed that TRPM8 was expressed in mouse white adipocytes at mRNA, protein and functional levels. The mRNA expression of Trpm8 was significantly increased in the differentiated white adipocytes than pre-adipocytes. Moreover, activation of TRPM8 by menthol enhanced the expression of thermogenic genes in cultured white aidpocytes. And menthol-induced increases of the thermogenic genes in white adipocytes was inhibited by either KT5720 (a protein kinase A inhibitor) or BAPTA-AM. In addition, high fat diet (HFD)-induced obesity in mice was significantly recovered by co-treatment with menthol. Dietary menthol enhanced WAT "browning" and improved glucose metabolism in HFD-induced obesity mice as well. Therefore, we concluded that TRPM8 might be involved in WAT "browning" by increasing the expression levels of genes related to thermogenesis and energy metabolism. And dietary menthol could be a novel approach for combating human obesity and related metabolic diseases.
Publishing Year
Date Published
2017-08-24
Journal Title
Oncotarget
Publisher
Impact Journals
Volume
8
Issue
43
Page
75114 - 75126
ISSN
IST-REx-ID
Cite this
Jiang C, Zhai M-Z, Yan D, et al. Dietary menthol-induced TRPM8 activation enhances WAT “browning” and ameliorates diet-induced obesity. Oncotarget. 2017;8(43):75114-75126. doi:10.18632/oncotarget.20540
Jiang, C., Zhai, M.-Z., Yan, D., Li, D., Li, C., Zhang, Y., … Sun, W. (2017). Dietary menthol-induced TRPM8 activation enhances WAT “browning” and ameliorates diet-induced obesity. Oncotarget. Impact Journals. https://doi.org/10.18632/oncotarget.20540
Jiang, Changyu, Ming-Zhu Zhai, Dong Yan, Da Li, Chen Li, Yonghong Zhang, Lizu Xiao, Donglin Xiong, Qiwen Deng, and Wuping Sun. “Dietary Menthol-Induced TRPM8 Activation Enhances WAT ‘Browning’ and Ameliorates Diet-Induced Obesity.” Oncotarget. Impact Journals, 2017. https://doi.org/10.18632/oncotarget.20540.
C. Jiang et al., “Dietary menthol-induced TRPM8 activation enhances WAT ‘browning’ and ameliorates diet-induced obesity,” Oncotarget, vol. 8, no. 43. Impact Journals, pp. 75114–75126, 2017.
Jiang C, Zhai M-Z, Yan D, Li D, Li C, Zhang Y, Xiao L, Xiong D, Deng Q, Sun W. 2017. Dietary menthol-induced TRPM8 activation enhances WAT “browning” and ameliorates diet-induced obesity. Oncotarget. 8(43), 75114–75126.
Jiang, Changyu, et al. “Dietary Menthol-Induced TRPM8 Activation Enhances WAT ‘Browning’ and Ameliorates Diet-Induced Obesity.” Oncotarget, vol. 8, no. 43, Impact Journals, 2017, pp. 75114–26, doi:10.18632/oncotarget.20540.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
Access Level
Open Access
Date Uploaded
2018-12-12
MD5 Checksum
2219e5348bbfe1aac2725aa620c33280